Abstract Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud‐aerosol‐turbulence interactions, observational studies of collision‐coalescence in a controlled laboratory environment are needed. In an existing convection‐cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection‐cloud chamber that may intensify collision‐coalescence. We employ a large‐eddy simulation (LES) model with a size‐resolved (bin) cloud microphysics scheme to explore how cloud properties and the intensity of collision‐coalescence are affected by the chamber size and aspect ratio, surface roughness, side‐wall wetness, side‐wall temperature arrangement, and aerosol injection rate. Simulations without condensation and evaporation within the domain are first performed to explore the turbulence dynamics and wall fluxes. The LES wall fluxes are used to modify the Scalar Flux‐budget Model, which is then applied to demonstrate the need for non‐uniform side‐wall temperature (two side walls as warm as the bottom and the two others as cold as the top) to maintain high supersaturation in a tall chamber. The results of LES with full cloud microphysics reveal that collision‐coalescence is greatly enhanced by employing a taller chamber with saturated side walls, non‐uniform side‐wall temperature, and rough surfaces. For the conditions explored, although lowering the aerosol injection rate broadens the droplet size distribution, favoring collision‐coalescence, the reduced droplet number concentration decreases the frequency of collisions.
more »
« less
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Abstract. A large convection–cloud chamber has the potential to produce drizzle-sized droplets, thus offering a new opportunity to investigate aerosol–cloud–drizzle interactions at a fundamental level under controlled environmental conditions. One key measurement requirement is the development of methods to detect the low-concentration drizzle drops in such a large cloud chamber. In particular, remote sensing methods may overcome some limitations of in situ methods. Here, the potential of an ultrahigh-resolution radar to detect the radar return signal of a small drizzle droplet against the cloud droplet background signal is investigated. It is found that using a small sampling volume is critical to drizzle detection in a cloud chamber to allow a drizzle drop in the radar sampling volume to dominate over the background cloud droplet signal. For instance, a radar volume of 1 cubic centimeter (cm3) would enable the detection of drizzle embryos with diameter larger than 40 µm. However, the probability of drizzle sampling also decreases as the sample volume reduces, leading to a longer observation time. Thus, the selection of radar volume should consider both the signal power and the drizzle occurrence probability. Finally, observations from the Pi Convection–Cloud Chamber are used to demonstrate the single-drizzle-particle detection concept using small radar volume. The results presented in this study also suggest new applications of ultrahigh-resolution cloud radar for atmospheric sensing.
more »
« less
- PAR ID:
- 10523956
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 1133 to 1143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bin microphysics schemes are useful tools for cloud simulations and are often considered to provide a benchmark for model intercomparison. However, they may experience issues with numerical diffusion, which are not well quantified, and the transport of hydrometeors depends on the choice of advection scheme, which can also change cloud simulation results. Here, an atmospheric large‐eddy simulation model is adapted to simulate a statistically steady‐state cloud in a convection cloud chamber under well‐constrained conditions. Two bin microphysics schemes, a spectral bin method and the method of moments, as well as several advection methods for the transport of the microphysical variables are employed for model intercomparison. Results show that different combinations of microphysics and advection schemes can lead to considerable differences in simulated cloud properties, such as cloud droplet number concentration. We find that simulations using the advection scheme that suffers more from numerical diffusion tends to have a smaller droplet number concentration and liquid water content, while simulation with the microphysics scheme that suffers more from numerical diffusion tends to have a broader size distribution and thus larger mean droplet sizes. Sensitivities of simulations to bin resolution, spatial resolution, and temporal resolution are also tested. We find that refining the microphysical bin resolution leads to a broader cloud droplet size distribution due to the advection of hydrometeors. Our results provide insight for using different advection and microphysics schemes in cloud chamber simulations, which might also help understand the uncertainties of the schemes used in atmospheric cloud simulations.more » « less
-
A THz radar, with its wide bandwidth, is capable of high‐resolution imaging down to the centimeter scale. In this study, a THz radar is applied to detect hydrometeors generated in a spray chamber. The observed backscattering signals show fluctuations at centimeter scales, indicating various hydrometeor distribution patterns along the radar beam. A co‐located High‐Speed Imaging (HSI) sensor is used to measure the Drop Size Distributions (DSD) in the spray chamber. The radar sampling beam is well aligned with the HSI probes, allowing an objective comparison between the remote sensing and in situ observations. In this study, the observed radar power is compared with the power estimated from the HSI measurements. Results show great consistency, with power difference smaller than 0.5 dB. This study demonstrates the feasibility and great potential of using a THz radar for ultra‐high‐resolution observations of clouds in a laboratory facility, and in the real atmosphere.more » « less
-
Abstract The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.more » « less
-
Abstract The role played by fluctuations of supersaturation in the growth of cloud droplets is examined in this study. The stochastic condensation framework and the three regimes of activation of cloud droplets— namely, mean dominant, fluctuation influenced, and fluctuation dominant—are used for analyzing the data from high-resolution large-eddy simulations of the Pi convection-cloud chamber. Based on a detailed budget analysis the significance of all the terms in the evolution of the droplet size distribution equation is evaluated in all three regimes. The analysis indicates that the mean-growth rate is a dominant process in shaping the droplet size distribution in all three regimes. Turbulence introduces two sources of stochasticity, turbulent transport and particle lifetime, and supersaturation fluctuations. The transport of cloud droplets plays an important role in all three regimes, whereas the direct effect of supersaturation fluctuations is primarily related to the activation and growth of the small droplets in the fluctuation-influenced and fluctuation-dominant regimes. We compare our results against the previous studies (experimental and theory) of the Pi chamber, and discuss the limitations of the existing models based on the stochastic condensation framework. Furthermore, we extend the discussion of our results to atmospheric clouds, and in particular focus on recent adiabatic turbulent cloud parcel simulations based on the stochastic condensation framework, and emphasize the importance of entrainment/mixing and turbulent transport in shaping the droplet size distribution.more » « less