skip to main content

Search for: All records

Creators/Authors contains: "Lan, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 17, 2023
  2. Free, publicly-accessible full text available July 24, 2023
  3. Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. In this paper, we propose a framework for learning representations of educational process data that is applicable across different learning scenarios. Our framework consists of a pre-training step that uses BERTtype objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation’s report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.
    Free, publicly-accessible full text available July 1, 2023
  4. In sequential recommender system applications, it is important to develop models that can capture users' evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to 50% fewer sketch items to reach the same predictive quality than existing sketching policies.
    Free, publicly-accessible full text available June 30, 2023
  5. Free, publicly-accessible full text available July 24, 2023
  6. Mitrovic, A ; Bosch, N (Ed.)
    Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended mathmore »questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training.« less
    Free, publicly-accessible full text available July 1, 2023
  7. Automatic short answer grading is an important research di- rection in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-the- art approaches use neural language models to create vector- ized representations of students responses, followed by clas- sifers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained lan- guage models that are not well-adapted to educational sub- ject domains and/or student-generated text and ii) they al- most always train one model per question, ignoring the link- age across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grad- ing for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Sec- ond, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our frameworkmore »on a real-world dataset of student responses to open-ended math questions and show that our framework (often signif- icantly) outperform existing approaches, especially for new questions that are not seen during training.« less
    Free, publicly-accessible full text available July 1, 2023
  8. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended mathmore »questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training.« less
    Free, publicly-accessible full text available July 1, 2023
  9. Mitrovic, A ; Bosch, N. (Ed.)
    Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended mathmore »questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training.« less
    Free, publicly-accessible full text available July 1, 2023
  10. Free, publicly-accessible full text available July 27, 2023