Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Model-Based Reinforcement Learning (MBRL) has shown promise in visual control tasks due to its data efficiency. However, training MBRL agents to develop generalizable perception remains challenging, especially amid visual distractions that introduce noise in representation learning. We introduce Segmentation Dreamer (SD), a framework that facilitates representation learning in MBRL by incorporating a novel auxiliary task. Assuming that task-relevant components in images can be easily identified with prior knowledge in a given task, SD uses segmentation masks on image observations to reconstruct only task-relevant regions, reducing representation complexity. SD can leverage either ground-truth masks available in simulation or potentially imperfect segmentation foundation models. The latter is further improved by selectively applying the image reconstruction loss to mitigate misleading learning signals from mask prediction errors. In modified DeepMind Control suite and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work and is especially effective in sparse reward tasks that had been unsolvable by prior work. We also validate its effectiveness in a real-world robotic lane-following task when training with intentional distractions for zero-shot transfer.amore » « lessFree, publicly-accessible full text available August 5, 2026
-
While Deep Reinforcement Learning (DRL) has achieved remarkable success across various domains, it remains vulnerable to occasional catastrophic failures without additional safeguards. An effective solution to prevent these failures is to use a shield that validates and adjusts the agent’s actions to ensure compliance with a provided set of safety specifications. For real-world robotic domains, it is essential to define safety specifications over continuous state and action spaces to accurately account for system dynamics and compute new actions that minimally deviate from the agent’s original decision. In this paper, we present the first shielding approach specifically designed to ensure the satisfaction of safety requirements in continuous state and action spaces, making it suitable for practical robotic applications. Our method builds upon realizability, an essential property that confirms the shield will always be able to generate a safe action for any state in the environment. We formally prove that realizability can be verified for stateful shields, enabling the incorporation of non-Markovian safety requirements, such as loop avoidance. Finally, we demonstrate the effectiveness of our approach in ensuring safety without compromising the policy’s success rate by applying it to a navigation problem and a multi-agent particle environment1. Keywords: Shielding, Reinforcement Learning, Safety, Roboticsmore » « lessFree, publicly-accessible full text available June 4, 2026
-
Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algo- rithm for two-player zero-sum games that has been empirically shown to find approximate Nash equilibria in large games. Although PSRO is guaranteed to converge to an approximate Nash equilibrium and can handle continuous actions, it may take an exponential number of iterations as the number of information states (infostates) grows. We propose Extensive-Form Double Oracle (XDO), an extensive-form double oracle algorithm for two-player zero-sum games that is guar- anteed to converge to an approximate Nash equilibrium linearly in the number of infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO mixes best responses at every infostate. We also introduce Neural XDO (NXDO), where the best response is learned through deep RL. In tabular experiments on Leduc poker, we find that XDO achieves an approximate Nash equilibrium in a number of iterations an order of magnitude smaller than PSRO. Experiments on a modified Leduc poker game and Oshi-Zumo show that tabular XDO achieves a lower exploitability than CFR with the same amount of computation. We also find that NXDO outperforms PSRO and NFSP on a sequential multidimensional continuous-action game. NXDO is the first deep RL method that can find an approximate Nash equilibrium in high-dimensional continuous-action sequential games. Experiment code is available at https://github.com/indylab/nxdo.more » « less
-
challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable PSRO-based method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of 1050. P2SRO is able to achieve state-of-theart performance on Barrage Stratego and beats all existing bots. Experiment code is available at https://github.com/JBLanier/pipeline-psro.more » « less
An official website of the United States government

Full Text Available