skip to main content

Search for: All records

Creators/Authors contains: "Leach, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A transparent indium tin oxide (ITO) contact to bulk n-GaN and n-GaN thin film on c-face sapphire with a specific contact resistivity of 8.06 × 10−4Ω.cm2and 3.71 × 10−4Ω.cm2was measured, respectively. Our studies relied on an RF sputtering system for ITO deposition. We have investigated the formation of the ITO-based contacts on untreated and plasma treated samples. A nonlinearI–Vcurve was observed for ITO deposited on untreated samples. On the other hand, anI–Vcurve with linear behavior was observed for plasma-treated samples, indicating the formation of ohmic contacts. From theC-Vmeasurements, it was observed that there was also an increase in the carrier concentration in plasma treated samples compared to untreated samples. This can be attributed to the removal of surface oxide layer present on the GaN surface, and increase in nitrogen vacancies after SiCl4plasma treatment. In addition, the increase in nitrogen vacancies at the GaN surface can also enhance localized surface/sub-surface carriers, thereby reducing the contact resistance further.

  2. AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κ z ; along the c-axis) and in-plane (κ r ; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κ z shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κ r . For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κ r to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.
    Free, publicly-accessible full text available November 7, 2023
  3. Abstract Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN interlayer based vertical trench metal–oxide–semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters andmore »the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1–5.00 × 1018 cm−3) substrate with the highest crystalline quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices.« less