skip to main content

Search for: All records

Creators/Authors contains: "Lee, Chien-Hsiu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whether supernovae are a significant source of dust has been a long-standing debate. The large quantities of dust observed in high-redshift galaxies raise a fundamental question as to the origin of dust in the Universe since stars cannot have evolved to the AGB dust-producing phase in high-redshift galaxies. In contrast, supernovae occur within several millions of years after the onset of star formation. This white paper focuses on dust formation in supernova ejecta with US-Extremely Large Telescope (ELT) perspective during the era of JWST and LSST.
  2. Abstract

    We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes andmore »their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.

    « less
  3. Abstract

    We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg2 ultra-deep layer and 5.78 deg2 deep layer in the Subaru Strategic Program over six- and four-month periods from 2016 to 2017, respectively. The ultra-deep layer reaches a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in g, r, i, z, and y bands, respectively; the deep layer is ∼0.6 mag shallower. In total, 1824 supernova candidates were identified. Based on light-curve fitting and derived light-curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at z > 1. Our unique data set doubles the number of Type Ia SNe at z > 1 and enables various time-domain analyses of Type II SNe, high-redshift superluminous SNe, variable stars, and active galactic nuclei.