skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Jack C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 2D memristors have demonstrated attractive resistive switching characteristics recently but also suffer from the reliability issue, which limits practical applications. Previous efforts on 2D memristors have primarily focused on exploring new material systems, while damage from the metallization step remains a practical concern for the reliability of 2D memristors. Here, the impact of metallization conditions and the thickness of MoS2films on the reliability and other device metrics of MoS2‐based memristors is carefully studied. The statistical electrical measurements show that the reliability can be improved to 92% for yield and improved by ≈16× for average DC cycling endurance in the devices by reducing the top electrode (TE) deposition rate and increasing the thickness of MoS2films. Intriguing convergence of switching voltages and resistance ratio is revealed by the statistical analysis of experimental switching cycles. An “effective switching layer” model compatible with both monolayer and few‐layer MoS2, is proposed to understand the reliability improvement related to the optimization of fabrication configuration and the convergence of switching metrics. The Monte Carlo simulations help illustrate the underlying physics of endurance failure associated with cluster formation and provide additional insight into endurance improvement with device fabrication optimization. 
    more » « less
  2. Abstract Monolayer molybdenum disulfide has been previously discovered to exhibit non-volatile resistive switching behavior in a vertical metal-insulator-metal structure, featuring ultra-thin sub-nanometer active layer thickness. However, the reliability of these nascent 2D-based memory devices was not previously investigated for practical applications. Here, we employ an electron irradiation treatment on monolayer MoS 2 film to modify the defect properties. Raman, photoluminescence, and X-ray photoelectron spectroscopy measurements have been performed to confirm the increasing amount of sulfur vacancies introduced by the e-beam irradiation process. The statistical electrical studies reveal the reliability can be improved by up to 1.5× for yield and 11× for average DC cycling endurance in the devices with a moderate radiation dose compared to unirradiated devices. Based on our previously proposed virtual conductive-point model with the metal ion substitution into sulfur vacancy, Monte Carlo simulations have been performed to illustrate the irradiation effect on device reliability, elucidating a clustering failure mechanism. This work provides an approach by electron irradiation to enhance the reliability of 2D memory devices and inspires further research in defect engineering to precisely control the switching properties for a wide range of applications from memory computing to radio-frequency switches. 
    more » « less
  3. null (Ed.)
    MoS 2 has been reported to exhibit a resistive switching phenomenon in a vertical metal–insulator–metal (MIM) structure and has attracted much attention due to its ultra-thin active layer thickness. Here, the resistance evolutions in the high resistance state (HRS) and low resistance state (LRS) are investigated under constant voltage stress (CVS) or constant current stress (CCS) on MoS 2 resistive switching devices. Interestingly, compared with bulk transition metal oxides (TMO), MoS 2 exhibits an opposite characteristic in the fresh or pre-RESET device in the “HRS” wherein the resistance will increase to an even higher resistance after applying CVS, a unique phenomenon only accessible in 2D-based resistive switching devices. It is inferred that instead of in the highest resistance state, the fresh or pre-RESET devices are in an intermediate state with a small amount of Au embedded in the MoS 2 film. Inspired by the capability of both bipolar and unipolar operation, positive and negative CVS measurements are performed and show similar characteristics. In addition, it is observed that the resistance state transition is faster when using higher electric stress. Numerical simulations have been performed to study the temperature effect with small-area integration capability. These results can be explained by a modified conductive-bridge-like model based on Au migration, uncovering the switching mechanisms in the ultrathin 2D materials and inspiring future studies in this area. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond. 
    more » « less