Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (
R 2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact thatmore »Significance Statement A new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output.
-
It can be expensive and difficult to collect direct bathymetry data for nearshore regions, especially in high-energy locations where there are temporally and spatially varying bathymetric features like sandbars. As a result, there has been increasing interest in remote assessment techniques for estimating bathymetry. Recent efforts have combined Kalman filter–based techniques with indirect video-based observations for bathymetry inversion. Here, we estimate nearshore bathymetry by utilizing observed wave celerity and wave height, which are related to bathymetry through phase-averaged wave dynamics. We present a modified compressed-state Kalman filter (CSKF) method, a fast and scalable Kalman filter method for linear and nonlinear problems with large numbers of unknowns and measurements, and apply it to two nearshore bathymetry estimation problems. To illustrate the robustness and accuracy of our method, we compare its performance with that of two ensemble-based approaches on twin bathymetry estimation problems with profiles based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We first consider an estimation problem for a temporally constant bathymetry profile. Then we estimate bathymetry as it evolves in time. Our results indicate that the CSKF method is more accurate and robust than the ensemble-based methods withmore »