skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, M y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one. 
    more » « less
  2. A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV , and an upper limit on the width Γ H < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 1.5 + 2.0 MeV , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. A<sc>bstract</sc> A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at$$ \sqrt{s} $$ s = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb−1, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to twoτ′ leptons with an electric charge equal to 2eis presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Free, publicly-accessible full text available April 1, 2026
  5. By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ∑Mclump/Mgmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = ∑Lclump/Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 kms−1 of an arm). We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and H I to H2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process. 
    more » « less
  6. Nuclear medium effects on B + meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of s NN = 8.16 TeV , corresponding to an integrated luminosity of 175 nb 1 , were used. The scaling factors in the ratio are determined using a novel approach based on the Z μ μ + cross sections measured in the same events. The scaled ratio for B + is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Abstract We present the most sensitive and detailed view of the neutral hydrogen ( $${\rm H\small I}$$ ) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal $${\rm H\small I}$$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ( $$1.6\,\mathrm{mJy\ beam}^{-1}$$ ) $$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$$ spectral channel with an angular resolution of $$30^{\prime\prime}$$ ( $${\sim}10\,\mathrm{pc}$$ ). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire $${\sim}25\,\mathrm{deg}^2$$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes $${\rm H\small I}$$ test observations. 
    more » « less
  8. A<sc>bstract</sc> The production cross sections of$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 and B+mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb−1. The cross sections are based on measurements of the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 →J/ψ(μ+μ)ϕ(1020)(K+K) and B+→J/ψ(μ+μ)K+decay channels. Results are presented in the transverse momentum (pT) range 7–50 GeV/cand the rapidity interval |y|<2.4 for the B mesons. The measuredpT-differential cross sections of B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors,RAA, of the B mesons are determined. ForpT>10 GeV/c, both mesons are found to be suppressed in PbPb collisions (withRAAvalues significantly below unity), with less suppression observed for the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 mesons. In thispTrange, theRAAvalues for the B+mesons are consistent with those for inclusive charged hadrons and D0mesons. Below 10 GeV/c, both B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 are found to be less suppressed than either inclusive charged hadrons or D0mesons, with the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 RAAvalue consistent with unity. TheRAAvalues found for the B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  9. A search is presented for an extended Higgs sector with two new particles, X and ϕ , in the process X ϕ ϕ ( γ γ ) ( γ γ ) . Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb 1 . No evidence of such resonances is seen. Upper limits are set on the production cross section for m X between 300 and 3000 GeV and m ϕ / m X between 0.5% and 2.5%, representing the most sensitive search in this channel. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available January 1, 2026