skip to main content


Search for: All records

Creators/Authors contains: "Lee, Man-Chun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$ for $t>0$ for some constant ${\alpha }>0$ . As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$ , provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature . By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$ . 
    more » « less
  2. null (Ed.)
    Abstract We show the existence of complete negative Kähler–Einstein metric on Stein manifolds with holomorphic sectional curvature bounded from above by a negative constant. We prove that any Kähler metrics on such manifolds can be deformed to the complete negative Kähler–Einstein metric using the normalized Kähler–Ricci flow. 
    more » « less