Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present the first measurement of cosmic-ray fluxes of and isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on and nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the and fluxes exhibit nearly identical time variations and, above , the time variations of , , He, Be, B, C, N, and O fluxes are identical. Above , we find an identical rigidity dependence of the and fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the flux. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            We perform an angular analysis of the decay for the dielectron mass squared, , range of using the full Belle dataset in the and channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients . We perform a fit to the differential decay rate and measure the imaginary component of the transversality amplitude to be , and the transverse asymmetry to be , with and fixed to the Standard Model values. The resulting constraints on the value of are consistent with the Standard Model within a confidence interval. Published by the American Physical Society2024more » « less
- 
            We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( ) are not observed. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            We measure the complete set of angular coefficients for exclusive decays ( , ). Our analysis uses the full Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the transition and the Cabibbo-Kobayashi-Maskawa matrix element . Using recent lattice QCD calculations for the hadronic form factors, we find using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024more » « less
- 
            We report the results of the first search for decays to the final state using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. The results are interpreted in terms of both direct baryon-number-violating decay and oscillations which follow the standard model decay . We observe no evidence for baryon number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating and standard model branching fractions to be and on the effective angular frequency of mixing in oscillations to be (equivalent to ). Published by the American Physical Society2024more » « less
- 
            We present a comprehensive study of decays using pairs collected with the Belle detector at the KEKB collider. This process is a suppressed charmless decay into two vector mesons and can exhibit interesting polarization and violation. The decay is observed for the first time with a significance of 7.9 standard deviations. We measure a branching fraction , a fraction of longitudinal polarization , and a time-integrated asymmetry , where the first uncertainties listed are statistical and the second are systematic. This is the first observation of and the first measurements of and for this decay. Published by the American Physical Society2024more » « less
- 
            We report a search for a heavy neutral lepton (HNL) that mixes predominantly with . The search utilizes data collected with the Belle detector at the KEKB asymmetric energy collider. The data sample was collected at and just below the center-of-mass energies of the and resonances and has an integrated luminosity of , corresponding to events. We search for production of the HNL (denoted ) in the decay followed by its decay via . The search focuses on the parameter-space region in which the HNL is long-lived, so that the originate from a common vertex that is significantly displaced from the collision point of the KEKB beams. Consistent with the expected background yield, one event is observed in the data sample after application of all the event-selection criteria. We report limits on the mixing parameter of the HNL with the neutrino as a function of the HNL mass. Published by the American Physical Society2024more » « less
- 
            This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
