Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Cyberinfrastructure Training and Capacity Building in Climate and Environmental Sciences (CI-TRACS) program represents a pioneering initiative aimed at enhancing cyberinfrastructure proficiency within Hawaii’s academic community. This paper outlines the program’s comprehensive strategy, which integrates curriculum development, hands-on workshops, and professional growth opportunities to cultivate a robust foundation in CI practices. The initiative’s core objective is to elevate CI literacy, promote cross-disciplinary cooperation, and endorse the principles of open science. Significant contributions from the CI-TRACS program include a suite of educational materials and resources tailored for integration into higher education syllabi. Collaboration with the Hawaii Data Science Institute has been instrumental in nurturing a burgeoning network of data science professionals. The CI-TRACS program is instrumental in realizing the shared vision of equipping Hawaii’s emerging workforce with the sophisticated CI skills necessary to navigate and excel in the evolving landscape of climate and environmental sciences.more » « lessFree, publicly-accessible full text available July 17, 2025
-
SAGE3, the newest and most advanced generation of the Smart Amplified Group Environment, is an open-source software designed to facilitate collaboration among scientists, researchers, students, and professionals across various fields. This tutorial aims to introduce attendees to the capabilities of SAGE3, demonstrating its ability to enhance collaboration and productivity in diverse settings, from co-located office collaboration to remote collaboration to both at once, with diverse displays, from personal laptops to large-scale display walls. Participants will learn how to effectively use SAGE3 for brainstorming, data analysis, and presentation purposes, as well as installation of private collaboration servers and development of custom applications.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Representing branching and comparative analyses in computational notebooks is complicated by the 1-dimensional (1D), top-down list arrangement of cells. Given the ubiquity of these and other non-linear features, their importance to analysis and narrative, and the struggles current 1D computational notebooks have, enabling organization of computational notebook cells in 2 dimensions (2D) may prove valuable. We investigated whether and how users would organize cells in such a “2D Computational Notebook” through a user study and gathered feedback from participants through a follow-up survey and optional interviews. Through the user study, we found 3 main design patterns for arranging notebook cells in 2D: Linear, Multi-Column, and Workboard. Through the survey and interviews, we found that users see potential value in 2D Computational Notebooks for branching and comparative analyses, but the expansion from 1D to 2D may necessitate additional navigational and organizational aids.more » « less
-
Translational software research bridges the gap between scientific innovations and practical applications, driving impactful societal advancements. However, developing such software is challenging due to interdisciplinary collaboration, technology adoption, and postfunding sustainability. This article presents the experiences and insights of the Scalable Adaptive Graphics Environment (SAGE) team, which has spent two decades developing translational, cross-disciplinary, collaboration tools to benefit computational science research. With a focus on SAGE and its next-generation iterations, we explore the inherent challenges in translational research, such as fostering cross-disciplinary collaboration, motivating technology adoption, and ensuring postfunding product sustainability. We also discuss the roles of funding agencies, policymakers, and academic institutions in promoting translational research. Although the journey is fraught with challenges, the societal impact and satisfaction derived from translational research underscore its significance in the broader scientific landscape. This article aims to encourage further conversation and the development of effective models for translational software projects.more » « less