skip to main content


Search for: All records

Creators/Authors contains: "Leroy, Adam K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M/M] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction (Rmol) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol,Rmol, and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.

     
    more » « less
  2. Abstract

    M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.

     
    more » « less
  3. ABSTRACT

    We use young clusters and giant molecular clouds (GMCs) in the galaxies M33 and M31 to constrain temporal and spatial scales in the star formation process. In M33, we compare the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) catalogue of 1214 clusters with ages measured via colour–magnitude diagram (CMD) fitting to 444 GMCs identified from a new 35 pc resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(2–1) survey. In M31, we compare the Panchromatic Hubble Andromeda Treasury (PHAT) catalogue of 1249 clusters to 251 GMCs measured from a Combined Array for Research in Millimeter-wave Astronomy (CARMA) 12CO(1–0) survey with 20 pc resolution. Through two-point correlation analysis, we find that young clusters have a high probability of being near other young clusters, but correlation between GMCs is suppressed by the cloud identification algorithm. By comparing the positions, we find that younger clusters are closer to GMCs than older clusters. Through cross-correlation analysis of the M33 cluster data, we find that clusters are statistically associated when they are ≤10 Myr old. Utilizing the high precision ages of the clusters, we find that clusters older than ≈18 Myr are uncorrelated with the molecular interstellar medium (ISM). Using the spatial coincidence of the youngest clusters and GMCs in M33, we estimate that clusters spend ≈4–6 Myr inside their parent GMC. Through similar analysis, we find that the GMCs in M33 have a total lifetime of ≈11–15 Myr. We also develop a drift model and show that the above correlations can be explained if the clusters in M33 have a 5–10 km s−1 velocity dispersion relative to the molecular ISM.

     
    more » « less
  4. Abstract

    Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions.

     
    more » « less
  5. Abstract

    We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio12/13I[12CO(J=10)]/I[13CO(J=10)]and the properties of the stars and ionized gas. Higher12/13values are found in interacting galaxies compared to those in noninteracting galaxies. The global12/13slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged12/13profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of12/13are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged12/13increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged12/13does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks,12/13is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on12/13, which further complicates the interpretations of12/13variations.

     
    more » « less
  6. Abstract The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 > 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. ABSTRACT

    Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.

     
    more » « less
  8. Abstract

    The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of ≈8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of ∼(8–17)×106M. In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4–0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas followingx2orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs.

     
    more » « less
  9. Abstract

    We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2–1) maps from the PHANGS–Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (Mmol≳ 105.3M). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS–ALMA footprint. We detect CO (2–1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2–1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2–1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN–molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2–1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2–1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2–1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities.

     
    more » « less
  10. Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s −1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s −1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr −1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN. 
    more » « less