Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mid-infrared (mid-IR) photodetection is important for various applications, including biomedical diagnostics, security, chemical identification, and free-spacing optical communications. However, conventional “photon” mid-IR photodetectors require liquid nitrogen cooling (i.e., MCT). Furthermore, acquiring mid-IR spectra usually involves a complex and expensive Fourier Transform Infrared spectrometer, a tabletop instrument consisting of a meter-long interferometer and MCT detectors, which is not suitable for mobile and compact device applications. In this work, we present tunable photoresponsivity in the mid-IR wavelength in palladium diselenide (PdSe2) – molybdenum disulfide (MoS2) heterostructure field-effect transistors (FETs), operating at room temperature. Furthermore, we applied a tunable membrane cavity to modulate the Fabry–Pérot resonance to modulate the absorption spectrum of the device layer. We used a robust polyetherimide (PEI) membrane with CVD-grown graphene to electrically tune the membrane structure. For the next step, we will integrate the PdSe2-based photodetector and tunable membrane to increase detection sensitivity and spectrum tunability to realize the ‘learning’-based spectroscopy.more » « less
-
Computational spectrometry is an emerging field that uses photodetection in conjunction with numerical algorithms for spectroscopic measurements. Compact single photodetectors made from layered materials are particularly attractive since they eliminate the need for bulky mechanical and optical components used in traditional spectrometers and can easily be engineered as heterostructures to optimize device performance. However, such photodetectors are typically nonlinear devices, which adds complexity to extracting optical spectra from their response. Here, we train an artificial neural network to recover the full nonlinear spectral photoresponse of a single GeSe-InSe p-n heterojunction device. The device has a spectral range of 400 to 1100 nm, a small footprint of ~25 × 25 square micrometers, and a mean reconstruction error of 2 × 10−4for the power spectrum at 0.35 nanometers. Using our device, we demonstrate a solution to metamerism, an apparent matching of colors with different power spectral distributions, which is a fundamental problem in optical imaging.more » « less
-
Abstract Graphene holds promise for thin, ultralightweight, and high‐performance nanoelectromechanical transducers. However, graphene‐only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single‐layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 105. The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high‐quality acoustic sound. The energy efficiency is≈10–100 times better than state‐of‐the‐art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.more » « less
An official website of the United States government
