Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The surfaces of colloidal nanocrystals are frequently passivated with carboxylate ligands that exert significant effects on their optoelectronic properties and chemical stability. The binding geometries of these ligands are often experimentally investigated using vibrational spectroscopy, but the interpretation of the IR signal is usually not trivial. Here, using machine-learning (ML) algorithms trained on DFT data, we simulate an IR spectrum of a lead-rich PbS nanocrystal passivated with butyrate ligands. We obtain good agreement with the experimental signal and demonstrate that the observed line shape stems from a very wide range of “tilted-bridge”-type geometries and does not indicate the coexistence of “bridging” and “chelating” binding modes as has been previously assumed. This work illustrates the limitations of empirical spectrum assignment and demonstrates the effectiveness of ML-driven molecular dynamics simulations in reproducing the IR spectra of nanoscopic systems.more » « lessFree, publicly-accessible full text available May 30, 2025
-
The lack of a detailed mechanistic understanding for plasmon-mediated charge transfer at metal-semiconductor interfaces severely limits the design of efficient photovoltaic and photocatalytic devices. A major remaining question is the relative contribution from indirect transfer of hot electrons generated by plasmon decay in the metal to the semiconductor compared to direct metal-to-semiconductor interfacial charge transfer. Here, we demonstrate an overall electron transfer efficiency of 44 ± 3% from gold nanorods to titanium oxide shells when excited on resonance. We prove that half of it originates from direct interfacial charge transfer mediated specifically by exciting the plasmon. We are able to distinguish between direct and indirect pathways through multimodal frequency-resolved approach measuring the homogeneous plasmon linewidth by single-particle scattering spectroscopy and time-resolved transient absorption spectroscopy with variable pump wavelengths. Our results signify that the direct plasmon-induced charge transfer pathway is a promising way to improve hot carrier extraction efficiency by circumventing metal intrinsic decay that results mainly in nonspecific heating.
Free, publicly-accessible full text available July 5, 2025 -
A major challenge in the “bottom-up” solvothermal synthesis of carbon dots (CDs) is the removal of small-molecule byproducts, noncarbonized polyamides, or other impurities that confound the optical properties. In previously reported benzene diamine-based CDs, the observed fluorescence signal already has been shown to arise from free small molecules, not from nanosized carbonized dots. Here we have unambiguously identified the small-molecule species in the synthesis of CDs starting with several isomers of benzene diamine by directly matching their NMR, mass spectrometry, and optical data with commercially available small organic molecules. By combining dialysis and chromatography, we have sufficiently purified the CD reaction mixtures to measure the CD size by TEM and STM, elemental composition, optical absorption and emission, and single-particle blinking dynamics. The results can be rationalized by electronic structure calculations on small model CDs. Our results conclusively show that the purified benzene diamine-based CDs do not emit red fluorescence, so the quest for full-spectrum fluorescence from isomers of a single precursor molecule remains open.more » « less
-
Salicylideneaniline (SA) is an archetypal system for excited-state intramolecular proton transfer (ESIPT) in non-planar systems. Multiple channels for relaxation involving both the keto and enol forms have been proposed after excitation to S1 with near-UV light. Here, we present transient absorption measurements of hot gas-phase SA, jet-cooled SA, and SA in Ar clusters using cavity-enhanced transient absorption spectroscopy (CE-TAS). Assignment of the spectra is aided by simulated TAS spectra, computed by applying time-dependent complete active space configuration interaction (TD-CASCI) to structures drawn from nonadiabatic molecular dynamics simulations. We find prompt ESIPT in all conditions followed by the rapid generation of the trans keto metastable photochrome state and fluorescent keto state in parallel. Increasing the internal energy increases the photochrome yield and decreases the fluorescent yield and fluorescent state lifetime observed in TAS. In Ar clusters, internal conversion of SA is severely hindered, but the photochrome yield is unchanged. Taken together, these results are consistent with the photochrome being produced via the vibrationally excited keto population after ESIPT.
-
We report femtosecond time-resolved measurements of the McLa!erty rearrangement following the strong-field tunnel ionization of 2-pentanone, 4-methyl-2-pentanone, and 4,4-dimethyl-2-pentanone. The pump−probe-dependent yields of the McLa!erty product ion are fit to a biexponential function with fast ("100 fs) and slow ("10 ps) time constants, the latter of which is faster for the latter two compounds. Following nearly instantaneous ionization, the fast time scale is associated with rotation of the molecule to a six-membered cyclic intermediate that facilitates transfer of the !-hydrogen, while the "50−100 times longer time scale is associated with a "-bond rearrangement and bond cleavage between the #- and $-carbons to produce the enol cation. These experimental measurements are supported by ab initio molecular dynamics trajectories, which further confirm the time scale of this important stepwise reaction in mass spectrometry.more » « less
-
null (Ed.)We report a significant Stokes shift enhancement in near-infrared fluorescing cyanines as a result of C4′-substitution with cyclic or acyclic amines. Based on a combined experimental and density functional study, a simple strategy for optimizing the Stokes shift is proposed. By tuning the relative energies of cyanine-like and bis-dipolar conformers, differing in the rotational angle of the amine substituent, it is possible to develop molecules that undergo conformational change upon excitation, resulting in a predictable Stokes shift.more » « less
-
Abstract Visibly transparent luminescent solar concentrators (TLSC) have the potential to turn existing infrastructures into net-zero-energy buildings. However, the reabsorption loss currently limits the device performance and scalability. This loss is typically defined by the Stokes shift between the absorption and emission spectra of luminophores. In this work, the Stokes shifts (
SS ) of near-infrared selective-harvesting cyanines are altered by substitution of the central methine carbon with dialkylamines. We demonstrate varyingSS with values over 80 nm and ideal infrared-visible absorption cutoffs. The corresponding TLSC with such modification shows a power conversion efficiency (PCE ) of 0.4% for a >25 cm2device area with excellent visible transparency >80% and up to 0.6% PCE over smaller areas. However, experiments and simulations show that it is not the Stokes shift that is critical, but the total degree of overlap that depends on the shape of the absorption tails. We show with a series ofSS -modulated cyanine dyes that theSS is not necessarily correlated to improvements in performance or scalability. Accordingly, we define a new parameter, the overlap integral, to sensitively correlate reabsorption losses in any LSC. In deriving this parameter, new approaches to improve the scalability and performance are discussed to fully optimize TLSC designs to enhance commercialization efforts.