Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we propose an image-translation-based unsupervised domain adaptation approach that iteratively trains an image translation and a classification network using each other. In Phase A, a classification network is used to guide the image translation to preserve the content and generate images. In Phase B, the generated images are used to train the classification network. With each step, the classification network and generator improve each other to learn the target domain representation. Detailed analysis and the experiments are testimony of the strength of our approach.more » « less
-
Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.more » « less
-
Matthews, MB (Ed.)The generalization power of deep-learning models is dependent on rich-labelled data. This supervision using large-scaled annotated information is restrictive in most realworld scenarios where data collection and their annotation involve huge cost. Various domain adaptation techniques exist in literature that bridge this distribution discrepancy. However, a majority of these models require the label sets of both the domains to be identical. To tackle a more practical and challenging scenario, we formulate the problem statement from a partial domain adaptation perspective, where the source label set is a super set of the target label set. Driven by the motivation that image styles are private to each domain, in this work, we develop a method that identifies outlier classes exclusively from image content information and train a label classifier exclusively on class-content from source images. Additionally, elimination of negative transfer of samples from classes private to the source domain is achieved by transforming the soft class-level weights into two clusters, 0 (outlier source classes) and 1 (shared classes) by maximizing the between-cluster variance between them.more » « less