skip to main content

Search for: All records

Creators/Authors contains: "Li, Bo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditionally, a high-performance microscope with a large numerical aperture is required to acquire high-resolution images. However, the images’ size is typically tremendous. Therefore, they are not conveniently managed and transferred across a computer network or stored in a limited computer storage system. As a result, image compression is commonly used to reduce image size resulting in poor image resolution. Here, we demonstrate custom convolution neural networks (CNNs) for both super-resolution image enhancement from low-resolution images and characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer histopathological images by using a combination of generator and discriminator networks so-called super-resolution generative adversarial network-based on aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The results provide high enhancement in image quality where the peak signal-to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, respectively. The derived performance is superior to the results obtained from both the bicubic interpolation and the well-known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image segmentation from the generated high-resolution breast cancer images derived with our model with an average Intersection over Union of 0.869 and an average dicemore »similarity coefficient of 0.893 for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt and Inception U-net Models, which applied the weights from the individually trained SRGAN-ResNeXt and inception U-net models as the pre-trained weights for transfer learning. The jointly trained model’s results are progressively improved and promising. We anticipate these custom CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI) systems to acquire high-resolution images from low-performance microscopes located in remote-constraint settings.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available August 1, 2023
  3. Bistable liquid crystal (LC) shutters have attracted much interest due to their low energy consumption and fast response time. In this paper, we demonstrate an electrically tunable/switchable biostable LC light shutter in biological optics through a three–step easy–assembly, inexpensive, multi–channel shutter. The liquid crystal exhibits tunable transparency (100% to 10% compared to the initial light intensity) under different voltages (0 V to 90 V), indicating its tunable potential. By using biomedical images, the response time, resolution, and light intensity changes of the LC under different voltages in three common fluorescence wavelengths are displayed intuitively. Particularly, the shutter’s performance in tumor images under the near–infrared band shows its application potential in biomedical imaging fields.
    Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available June 8, 2023
  5. Free, publicly-accessible full text available July 1, 2023
  6. ABSTRACT Mosquito surveillance is critical to reduce the risk of West Nile virus (WNV) transmission to humans. In response to surveillance indicators such as elevated mosquito abundance or increased WNV levels, many mosquito control programs will perform truck-mounted ultra-low volume (ULV) adulticide application to reduce the number of mosquitoes and associated virus transmission. Despite the common use of truck-based ULV adulticiding as a public health measure to reduce WNV prevalence, limited evidence exists to support a role in reducing viral transmission to humans. We use a generalized additive and fused ridge regression model to quantify the location-specific impact of truck-mounted ULV adulticide spray efforts from 2010 to 2018 in the North Shore Mosquito Abatement District (NSMAD) in metropolitan Chicago, IL, on commonly assessed risk factors from NSMAD surveillance gravid traps: Culex abundance, infection rate, and vector index. Our model also takes into account environmental variables commonly associated with WNV, including temperature, precipitation, wind speed, location, and week of year. Since it is unlikely ULV adulticide spraying will have the same impact at each trap location, we use a spatially varying spray effect with a fused ridge penalty to determine how the effect varies by trap location. We found that ULVmore »adulticide spraying has an immediate temporary reduction in abundance followed by an increase after 5 days. It is estimated that mosquito abundance increased more in sprayed areas than if left unsprayed in all but 3 trap locations. The impact on infection rate and vector index were inconclusive due to the large error associated with estimating trap-specific infection rates.« less
    Free, publicly-accessible full text available March 1, 2023
  7. Free, publicly-accessible full text available February 2, 2023
  8. Dense time-series remote sensing data with detailed spatial information are highly desired for the monitoring of dynamic earth systems. Due to the sensor tradeoff, most remote sensing systems cannot provide images with both high spatial and temporal resolutions. Spatiotemporal image fusion models provide a feasible solution to generate such a type of satellite imagery, yet existing fusion methods are limited in predicting rapid and/or transient phenological changes. Additionally, a systematic approach to assessing and understanding how varying levels of temporal phenological changes affect fusion results is lacking in spatiotemporal fusion research. The objective of this study is to develop an innovative hybrid deep learning model that can effectively and robustly fuse the satellite imagery of various spatial and temporal resolutions. The proposed model integrates two types of network models: super-resolution convolutional neural network (SRCNN) and long short-term memory (LSTM). SRCNN can enhance the coarse images by restoring degraded spatial details, while LSTM can learn and extract the temporal changing patterns from the time-series images. To systematically assess the effects of varying levels of phenological changes, we identify image phenological transition dates and design three temporal phenological change scenarios representing rapid, moderate, and minimal phenological changes. The hybrid deep learning model,more »alongside three benchmark fusion models, is assessed in different scenarios of phenological changes. Results indicate the hybrid deep learning model yields significantly better results when rapid or moderate phenological changes are present. It holds great potential in generating high-quality time-series datasets of both high spatial and temporal resolutions, which can further benefit terrestrial system dynamic studies. The innovative approach to understanding phenological changes’ effect will help us better comprehend the strengths and weaknesses of current and future fusion models.« less
  9. Free, publicly-accessible full text available March 1, 2023
  10. Free, publicly-accessible full text available January 1, 2023