Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2024
-
ABSTRACT Fast radio bursts (FRBs) are millisecond-time-scale radio transients, the origins of which are predominantly extragalactic and likely involve highly magnetized compact objects. FRBs undergo multipath propagation, or scattering, from electron density fluctuations on sub-parsec scales in ionized gas along the line of sight. Scattering observations have located plasma structures within FRB host galaxies, probed Galactic and extragalactic turbulence, and constrained FRB redshifts. Scattering also inhibits FRB detection and biases the observed FRB population. We report the detection of scattering times from the repeating FRB 20190520B that vary by up to a factor of 2 or more on minutes to days-long time-scales. In one notable case, the scattering time varied from 7.9 ± 0.4 ms to less than 3.1 ms ($95{{\ \rm per\ cent}}$ confidence) over 2.9 min at 1.45 GHz. The scattering times appear to be uncorrelated between bursts or with dispersion and rotation measure variations. Scattering variations are attributable to dynamic, inhomogeneous plasma in the circumsource medium, and analogous variations have been observed from the Crab pulsar. Under such circumstances, the frequency dependence of scattering can deviate from the typical power law used to measure scattering. Similar variations may therefore be detectable from other FRBs, even those with inconspicuous scattering, providing a unique probemore »
-
Abstract High-sensitivity interstellar scintillation and polarization observations of PSR B0656+14 made at three epochs over a year using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) show that the scattering is dominated by two different compact regions. We identify the one nearer to the pulsar with the shell of the Monogem Ring, thereby confirming the association. The other is probably associated with the Local Bubble. We find that the observed position angles of the pulsar spin axis and the spatial velocity are significantly different, with a separation of 19.°3 ± 0.°8, inconsistent with a previously published near-perfect alignment of 1° ± 2°. The two independent scattering regions are clearly defined in the secondary spectra, which show two strong forward parabolic arcs. The arc curvatures imply that the scattering screens corresponding to the outer and inner arcs are located approximately 28 pc from PSR B0656+14 and 185 pc from the Earth, respectively. Comparison of the observed Doppler profiles with electromagnetic simulations shows that both scattering regions are mildly anisotropic. For the outer arc, we estimate the anisotropy A R to be approximately 1.3, with the scattering irregularities aligned parallel to the pulsar velocity. For the outer arc, we compare the observed delaymore »Free, publicly-accessible full text available November 1, 2023
-
Abstract The repeating fast radio burst FRB 20190520B is localized to a galaxy at z = 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm −3 . Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delay τ (1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δ ν d (1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an H α emission measure (galaxy frame) EM s = 620 pc cm −6 × ( T /10 4 K) 0.9 , implying DM H α of order the value inferred from the FRB DM budget, DM h = 1121 − 138 + 89 pc cm −3 for plasma temperatures greater than the typical value 10 4 K. Combining τ and DM h yields a nominal constraint on the scattering amplification from the host galaxy F ˜ G = 1.5more »
-
Cowen, Lenore (Ed.)Abstract Motivation Biclustering has emerged as a powerful approach to identifying functional patterns in complex biological data. However, existing tools are limited by their accuracy and efficiency to recognize various kinds of complex biclusters submerged in ever large datasets. We introduce a novel fast and highly accurate algorithm RecBic to identify various forms of complex biclusters in gene expression datasets. Results We designed RecBic to identify various trend-preserving biclusters, particularly, those with narrow shapes, i.e. clusters where the number of genes is larger than the number of conditions/samples. Given a gene expression matrix, RecBic starts with a column seed, and grows it into a full-sized bicluster by simply repetitively comparing real numbers. When tested on simulated datasets in which the elements of implanted trend-preserving biclusters and those of the background matrix have the same distribution, RecBic was able to identify the implanted biclusters in a nearly perfect manner, outperforming all the compared salient tools in terms of accuracy and robustness to noise and overlaps between the clusters. Moreover, RecBic also showed superiority in identifying functionally related genes in real gene expression datasets. Availability and implementation Code, sample input data and usage instructions are available at the following websites. Code: https://github.com/holyzews/RecBic/tree/master/RecBic/.more »
-
ABSTRACT We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.
-
A fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple laboratory model of the real-world pores—a rectangular sudden contraction–expansion microchannel. We test four different polymer solutions with varying rheological properties, including xanthan gum (XG), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), and polyacrylamide (PAA). We compare their flows against that of pure water at the Reynolds ( R e ) and Weissenburg ( W i ) numbers that each span several orders of magnitude. We use particle streakline imaging to visualize the flow at the contraction–expansion region for a comprehensive investigation of both the sole and the combined effects of fluid shear thinning, elasticity and inertia. The observed flow regimes and vortex development in each of the tested fluids are summarized in the dimensionless W i − R e and χ L − R e parameter spaces, respectively, where χ L is the normalized vortex length. We find that fluid inertia draws symmetric vortices downstream at the expansion part of the microchannel. Fluid shear thinning causesmore »