skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Guodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr  > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions. 
    more » « less
  2. WISE J224607.6–052634.9 (W2246–0526) is a hot dust-obscured galaxy atz = 4.601, and the most luminous obscured quasar known to date. W2246–0526 harbors a heavily obscured supermassive black hole that is most likely accreting above the Eddington limit. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) in seven bands, including band 10, of the brightest far-infrared (FIR) fine-structure emission lines of this galaxy: [OI]63 μm, [OIII]88 μm, [NII]122 μm, [OI]145 μm, [CII]158 μm, [NII]205 μm, [CI]370 μm, and [CI]609 μm. A comparison of the data to a large grid of CLOUDYradiative transfer models reveals that a high hydrogen density (nH ∼ 3 × 103cm−3) and extinction (AV ∼ 300 mag), together with extreme ionization (log(U) = − 0.5) and a high X-ray to UV ratio (αox ≥ −0.8) are required to reproduce the observed nuclear line ratios. The values ofαoxandUare among the largest found in the literature and imply the existence of an X-ray-dominated region (XDR). In fact, this component explains the a priori very surprising non-detection of the [OIII]88 μmemission line, which is actually suppressed, instead of boosted, in XDR environments. Interestingly, the best-fitted model implies higher X-ray emission and lower CO content than what is detected observationally, suggesting the presence of a molecular gas component that should be further obscuring the X-ray emission over larger spatial scales than the central region that is being modeled. These results highlight the need for multiline infrared observations to characterize the multiphase gas in high redshift quasars and, in particular, W2246–0526 serves as an extreme benchmark for comparisons of interstellar medium conditions with other quasar populations at cosmic noon and beyond. 
    more » « less
  3. Abstract The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V. 
    more » « less
  4. null (Ed.)