skip to main content

Search for: All records

Creators/Authors contains: "Li, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theoretical studies of homogeneous cavitation have largely been based on the classical nucleation theory. However, existing cavitation models cannot adequately describe its dynamics at nanosecond timescale, which has been called for in other fields. We develop a model coupling nucleation kinetics with cavity growth and pressure feedback as saturation mechanisms. Our numerical studies reveal the exponential dependence of cavitation characteristics such as saturation cavity density and most probable cavity radius on model parameters: Tolman length and initial pressure. This work also sheds light on the possibility of accurately determining Tolman length, whose value has a large spread in the literature.
    Free, publicly-accessible full text available October 1, 2023
  2. Free, publicly-accessible full text available November 1, 2023
  3. Abstract

    Although integrins are known to be mechanosensitive and to possess many subtypes that have distinct physiological roles, single molecule studies of force exertion have thus far been limited to RGD-binding integrins. Here, we show that integrin α4β1 and RGD-binding integrins (αVβ1 and α5β1) require markedly different tension thresholds to support cell spreading. Furthermore, actin assembled downstream of α4β1 forms cross-linked networks in circularly spread cells, is in rapid retrograde flow, and exerts low forces from actin polymerization. In contrast, actin assembled downstream of αVβ1 forms stress fibers linking focal adhesions in elongated cells, is in slow retrograde flow, and matures to exert high forces (>54-pN) via myosin II. Conformational activation of both integrins occurs below 12-pN, suggesting that post-activation subtype-specific cytoskeletal remodeling imposes the higher threshold for spreading on RGD substrates. Multiple layers of single integrin mechanics for activation, mechanotransduction and cytoskeleton remodeling revealed here may underlie subtype-dependence of diverse processes such as somite formation and durotaxis.

  4. Free, publicly-accessible full text available July 23, 2023
  5. Free, publicly-accessible full text available July 18, 2023
  6. Free, publicly-accessible full text available July 10, 2023
  7. Abstract Background

    Four severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants predominated in the United States since 2021. Understanding disease severity related to different SARS-CoV-2 variants remains limited.


    Viral genome analysis was performed on SARS-CoV-2 clinical isolates circulating March 2021 through March 2022 in Cleveland, Ohio. Major variants were correlated with disease severity and patient outcomes.


    In total 2779 patients identified with either Alpha (n 1153), Gamma (n 122), Delta (n 808), or Omicron variants (n 696) were selected for analysis. No difference in frequency of hospitalization, intensive care unit (ICU) admission, and death were found among Alpha, Gamma, and Delta variants. However, patients with Omicron infection were significantly less likely to be admitted to the hospital, require oxygen, or admission to the ICU (2 12.8, P .001; 2 21.6, P .002; 2 9.6, P .01, respectively). In patients whose vaccination status was known, a substantial number had breakthrough infections with Delta or Omicron variants (218/808 [26.9] and 513/696 [73.7], respectively). In breakthrough infections, hospitalization rate was similar regardless of variant by multivariate analysis. No difference in disease severity was identified between Omicron subvariants BA.1 and BA.2.


    Disease severity associated with Alpha, Gamma, and Delta variants is comparable while Omicron infectionsmore »are significantly less severe. Breakthrough disease is significantly more common in patients with Omicron infection.

    « less
  8. Free, publicly-accessible full text available April 1, 2023
  9. Free, publicly-accessible full text available August 1, 2023
  10. Free, publicly-accessible full text available July 1, 2023