skip to main content


Search for: All records

Creators/Authors contains: "Li, Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 29, 2025
  2. Free, publicly-accessible full text available December 15, 2024
  3. Joe Calandrino and Carmela Troncoso (Ed.)
    As service providers are moving to the cloud, users are forced to provision sensitive data to the cloud. Confidential computing leverages hardware Trusted Execution Environment (TEE) to protect data in use, no longer requiring users’ trust to the cloud. The emerging service model, Confidential Computing as a Service (CCaaS), is adopted by service providers to offer service similar to the Function-as-a-Serivce manner. However, privacy concerns are raised in CCaaS, especially in multi-user scenarios. CCaaS need to assure the data providers that the service does not leak their privacy to any unauthorized parties and clear their data after the service. To address such privacy concerns with security guarantees, we first formally define the security objective, Proof of Being Forgotten (PoBF), and prove under which security constraints PoBF can be satisfied. Then, these constraints serve as guidelines in the implementation of the PoBF-compliant Framework (PoCF). PoCF consists of a generic library for different hardware TEEs, CCaaS prototype enclaves, and a verifier to prove PoBF-compliance. PoCF leverages Rust’s robust type system and security features, to construct a verified state machine with privacy-preserving contracts. Last, the experiment results show that the protections introduced by PoCF incur minor runtime performance overhead. 
    more » « less
  4. Safety and security play critical roles for the success of Autonomous Driving (AD) systems. Since AD systems heavily rely on AI components, the safety and security research of such components has also received great attention in recent years. While it is widely recognized that AI component-level (mis)behavior does not necessarily lead to AD system-level impacts, most of existing work still only adopts component-level evaluation. To fill such critical scientific methodology-level gap from component-level to real system-level impact, a system-driven evaluation platform jointly constructed by the community could be the solution. In this paper, we present PASS (Platform for Auto-driving Safety and Security), a system-driven evaluation prototype based on simulation. By sharing our platform building concept and preliminary efforts, we hope to call on the community to build a uniform and extensible platform to make AI safety and security work sufficiently meaningful at the system level. 
    more » « less
  5. null (Ed.)