skip to main content

Search for: All records

Creators/Authors contains: "Li, Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 24, 2022
  2. Goal: Lifting is a common manual material handling task performed in the workplaces. It is considered as one of the main risk factors for work-related musculoskeletal disorders. An important criterion to identify the unsafe lifting task is the values of the net force and moment at L5/S1 joint. These values are mainly calculated in a laboratory environment, which utilizes marker-based sensors to collect three-dimensional (3-D) information and force plates to measure the external forces and moments. However, this method is usually expensive to set up, time-consuming in process, and sensitive to the surrounding environment. In this study, we propose amore »deep neural network (DNN)-based framework for 3-D pose estimation, which addresses the aforementioned limitations, and we employ the results for L5/S1 moment and force calculation. Methods: At the first step of the proposed framework, full body 3-D pose is captured using a DNN, then at the second step, estimated 3-D body pose along with the subject's anthropometric information is utilized to calculate L5/S1 join's kinetic by a top-down inverse dynamic algorithm. Results: To fully evaluate our approach, we conducted experiments using a lifting dataset consisting of 12 subjects performing various types of lifting tasks. The results are validated against a marker-based motion capture system as a reference. The grand mean ± SD of the total moment/force absolute errors across all the dataset was 9.06 ± 7.60 N·m/4.85 ± 4.85 N. Conclusion: The proposed method provides a reliable tool for assessment of the lower back kinetics during lifting and can be an alternative when the use of marker-based motion capture systems is not possible.« less