skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Kenneth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines. 
    more » « less
  2. Readers find text difficult to consume for many reasons. Summarization can address some of these difficulties, but introduce others, such as omitting, misrepresenting, or hallucinating information, which can be hard for a reader to notice. One approach to addressing this problem is to instead modify how the original text is rendered to make important information more salient. We introduce Grammar-Preserving Text Saliency Modulation (GP-TSM), a text rendering method with a novel means of identifying what to de-emphasize. Specifically, GP-TSM uses a recursive sentence compression method to identify successive levels of detail beyond the core meaning of a passage, which are de-emphasized by rendering words in successively lighter but still legible gray text. In a lab study (n=18), participants preferred GP-TSM over pre-existing word-level text rendering methods and were able to answer GRE reading comprehension questions more efficiently. 
    more » « less