skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 23, 2026
  2. Free, publicly-accessible full text available May 30, 2026
  3. Abstract Understanding how mixed-species forests uptake subsurface water sources is critical to projecting future forest water use and stress. Variation in root water uptake (RWU) depths and volumes is common among trees but it is unclear how it is affected by species identity, local water availability or neighboring tree species compositions. We evaluated the hypothesis that RWU depths and the age of water (i.e., time since water entered soils as precipitation) taken up by red maples (Acer rubrum) varied significantly between two forested plots, both containing red maples, similar soils, topography and hydrologic conditions, but having different neighboring tree species. We measured soil moisture contents as well as stable isotopes (δ2H, δ18O) in plant xylem water and soil moisture across two years. These data were used to calibrate process-based stand-level ecohydrological models for each plot to estimate species-level RWU depths. Model calibration suggested significant differences in red maple tree RWU depths, transpiration rates and the ages of water taken up by maples across the two stands. Maple trees growing with ash and white spruce relied on significantly deeper and older water from the soil profile than maple trees growing with birch and oak. The drought risk profile experienced by maple trees differed between the plots as demonstrated by strong correlations between precipitation and model simulated transpiration on a weekly time scale for maples taking up shallow soil moisture and a monthly time scale for maples reliant on deeper soil moisture. These findings carry significant implications for our understanding of water competition in mixed-species forests and for the representation of forest rooting strategies in hydrologic and earth systems models. 
    more » « less
  4. ABSTRACT Sampling of stable isotopes in plant xylem water (δ2H, δ18O) has become a ubiquitous technique to study spatiotemporal variations in the water taken up by plant roots; however, open questions remain concerning the most appropriate time of day to sample trees to obtain representative xylem water isotopic values (δXYLEM). We sampled the δXYLEMof oak and maple trees prior to solar midday (i.e., in a recommended sampling window) and then again after solar midday (i.e., outside of the recommended window) across 4 months. The paired root mean squared difference between AM and PM δ18O ranged from 1.00‰ to 1.16‰ for maples and 0.23‰ to 2.55‰ for oaks across all sampling dates. Xylem water seasonal origin index (SOI) values derived from AM and PM δXYLEMsamples were significantly different, though both SOI estimates supported the conclusion that maple and oak δXYLEMreflected summer precipitation on all sampling dates. We conclude that sampling time of day is a significant consideration in the design of δXYLEMsampling campaigns; however, our findings also support flexibility in the collection time of δXYLEMin field sites where sampling during the optimal time of day is challenging. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. Free, publicly-accessible full text available December 31, 2025
  6. Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design. 
    more » « less
  7. Bloom, Kerry (Ed.)
    The chromosomes—DNA polymers and their binding proteins—are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living Schizosaccharomyces pombe cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops. 
    more » « less
  8. NA (Ed.)
    We study the investment incentives created by truthful mechanisms that allocate resources using approximation algorithms. Some approximation algorithms guarantee nearly 100% of the optimal welfare in the allocation problem but guarantee nothing when accounting for investment incentives. An algorithm's allocative and investment guarantees coincide if and only if itsconfirming negative externalitiesare sufficiently small. We introduce fast approximation algorithms for the knapsack problem that have no confirming negative externalities and guarantees close to 100% for both allocation and investment. 
    more » « less