The formation of the first supermassive black holes is expected to have occurred in some most pronounced matter and galaxy overdensities in the early universe. We have conducted a submillimeter wavelength continuum survey of 54
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z ∼ 6 quasars using the Submillimeter Common-User Bolometre Array-2 on the James Clerk Maxwell Telescope to study the environments aroundz ∼ 6 quasars. We identified 170 submillimeter galaxies (SMGs) with above 3.5σ detections in 450 or 850μ m maps. Their far-IR luminosities are (2.2–6.4) × 1012L ⊙, and their star formation rates are ∼400–1200M ⊙yr−1. We also calculated the SMGs’ differential and cumulative number counts in a combined area of ∼620 arcmin2. To a 4σ detection (at ∼5.5 mJy), SMGs’ overdensity is (±0.19), exceeding the blank-field source counts by a factor of 1.68. We find that 13/54 quasars show overdensities (at ∼5.5 mJy) ofδ SMG∼ 1.5–5.4. The combined area of these 13 quasars exceeds the blank-field counts with the overdensity to 5.5 mJy ofδ SMG∼ (±0.25) in the regions of ∼150 arcmin2. However, the excess is insignificant on the bright end (e.g., 7.5 mJy). We also compare results with previous environmental studies of Lyα emitters and Lyman break galaxies on a similar scale. Our survey presents the first systematic study of the environment of quasars atz ∼ 6. The newly discovered SMGs provide essential candidates for follow-up spectroscopic observations to test whether they reside in the same large-scale structures as the quasars and search for protoclusters at an early epoch. -
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a Δ lytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.more » « less
-
Abstract We report deep Karl G. Jansky Very Large Array (VLA) observations of the optically ultraluminous and radio-quiet quasar SDSS J010013.02+280225.8 (hereafter J0100+2802) at redshift z = 6.3. We detected the radio continuum emission at 1.5 GHz, 6 GHz, and 10 GHz. This leads to a radio power-law spectral index of α = −0.52 ± 0.18 ( S ∝ ν α ). The radio source is unresolved in all VLA bands with an upper limit to the size of 0.″2 (i.e., ∼1.1 kpc) at 10 GHz. We find variability in the flux density (increase by ∼33%) and the spectral index (steepened) between observations in 2016 and 2017. We also find that the VLA 1.5 GHz flux density observed in the same year is 1.5 times that detected with the Very Long Baseline Array (VLBA) in 2016 at the same frequency. This difference suggests that half of the radio emission from J0100+2802 comes from a compact core within 40 pc, and the rest comes from the surrounding few-kiloparsec area, which is diffuse and resolved out in the VLBA observations. The diffuse emission is 4 times brighter than what would be expected if driven by star formation. We conclude that the central active galactic nucleus is the dominant power engine of the radio emission in J0100+2802.more » « less
-
null (Ed.)Abstract Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with | d 33 | < 30 pC/N. We prepare a highly piezoelectric polymer ( d 33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization ( P s ) of 140 mC/m 2 . Given the theoretical limit of P s,β = 188 mC/m 2 for the neat β crystal, the high P s cannot be explained by the crystalline-amorphous two-phase model (i.e., P s,β = 270 mC/m 2 ). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d 33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.more » « less
-
Abstract The MAMMOTH-1 nebula at z = 2.317 is an enormous Ly α nebula (ELAN) extending to a ∼440 kpc scale at the center of the extreme galaxy overdensity BOSS 1441. In this paper, we present observations of the CO(3 − 2) and 250 GHz dust-continuum emission from MAMMOTH-1 using the IRAM NOrthern Extended Millimeter Array. Our observations show that CO(3 − 2) emission in this ELAN has not extended widespread emission into the circum- and inter-galactic media. We also find a remarkable concentration of six massive galaxies in CO(3 − 2) emission in the central ∼100 kpc region of the ELAN. Their velocity dispersions suggest a total halo mass of M 200 c ∼ 10 13.1 M ⊙ , marking a possible protocluster core associated with the ELAN. The peak position of the CO(3 − 2) line emission from the obscured AGN is consistent with the location of the intensity peak of MAMMOTH-1 in the rest-frame UV band. Its luminosity line ratio between the CO(3 − 2) and CO(1 − 0) r 3,1 is 0.61 ± 0.17. The other five galaxies have CO(3 − 2) luminosities in the range of (2.1–7.1) × 10 9 K km s −1 pc 2 , with the star-formation rates derived from the 250 GHz continuum of (<36)–224 M ⊙ yr −1 . Follow-up spectroscopic observations will further confirm more member galaxies and improve the accuracy of the halo mass estimation.more » « less
-
Abstract Studying brain‐wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro‐ diseases and ‐disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head‐mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain‐wide cerebrovascular reactivity (CVR) at single‐vessel resolution via relative changes in CBV, CBF, and SO2in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti‐correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.