skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xinyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. Pattern formation in spin systems with continuous-rotational symmetry (CRS) provides a powerful platform to study emergent complex magnetic phases and topological defects in condensed-matter physics. However, its understanding and correlation with unconventional magnetic order along with high-resolution nanoscale imaging are challenging. Here, we employ scanning nitrogen vacancy (NV) magnetometry to unveil the morphogenesis of spin cycloids at both the local and global scales within a single ferroelectric domain of (111)-oriented BiFeO3, which is a noncollinear antiferromagnet, resulting in formation of a glassy labyrinthine pattern. We find that the domains of locally oriented cycloids are interconnected by an array of topological defects and exhibit isotropic energy landscape predicted by first-principles calculations. We propose that the CRS of spin-cycloid propagation directions within the (111) drives the formation of the labyrinthine pattern and the associated topological defects such as antiferromagnetic skyrmions. Unexpectedly, reversing the as-grown ferroelectric polarization from [ 1   ¯ 1 ¯ 1 ¯ ] to [111] produces a noncycloidal NV image contrast which could be attributed to either the emergence of a uniformly magnetized state or a reversal of the cycloid polarity. These findings highlight that (111)-oriented BiFeO3is not only important for studying the fascinating subject of pattern formation but could also be utilized as an ideal platform for integrating novel topological defects in the field of antiferromagnetic spintronics. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  5. Abstract Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3thin films have typically been deposited at relatively high temperatures (650–800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3(001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration. 
    more » « less