Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Estimating the treatment effect benefits decision making in various domains as it can provide the potential outcomes of different choices. Existing work mainly focuses on covariates with numerical values, while how to handle covariates with textual information for treatment effect estimation is still an open question. One major challenge is how to filter out the nearly instrumental variables which are the variables more predictive to the treatment than the outcome. Conditioning on those variables to estimate the treatment effect would amplify the estimation bias. To address this challenge, we propose a conditional treatment-adversarial learning based matching method (CTAM). CTAM incorporates the treatment-adversarial learning to filter out the information related to nearly instrumental variables when learning the representations, and then it performs matching among the learned representations to estimate the treatment effects. The conditional treatment-adversarial learning helps reduce the bias of treatment effect estimation, which is demonstrated by our experimental results on both semi-synthetic and real-world datasets.more » « less
-
Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph. Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE's robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks.more » « less
An official website of the United States government
