skip to main content


Search for: All records

Creators/Authors contains: "Li, Yanhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate prediction of water flow is of utmost importance, particularly for ensuring water supply and informing early actions for floods and droughts. Existing flow prediction methods rely on the input of weather drivers, which hinders their applicability to monitoring small headwater streams due to the limited spatial resolution of existing weather datasets. This paper introduces a new dataset with frequent imagery on streams for water monitoring tasks. Our objective is to automatically predict streamflow for each stream site using frequent images taken at a sub-hourly scale. To overcome the challenge of limited labels for certain stream sites, we employ knowledge transfer from well-observed sites to poorly-observed sites via domain adaptation. As each stream site involves highly variable time series data over long periods, we introduce a novel method STCGAN (Spatial-Temporal Cycle Generative Adversarial Network), which incorporates temporal context by conditioning on the sequence's time and learns overall trends of stream flow variation. It integrates the predictive modeling of streamflow with the cyclic generative process and enhances the prediction with data augmentation using generated synthetic samples. Our experiments demonstrate superior performance of the proposed method using data collected from the West Brook area located in western Massachusetts, US. The proposed method can be further extended to selectively combine information from multiple well-observed stream sites, leading to improved overall performance. 
    more » « less
  2. Free, publicly-accessible full text available April 22, 2025