Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 20, 2025
-
Electro-chemo-mechanical (ECM) coupling refers to mechanical deformation due to electrochemically driven compositional change in a solid. An ECM actuator producing micrometre-size displacements and long-term stability at room temperature was recently reported, comprising a 20 mol% Gd-doped ceria (20GDC), a solid electrolyte membrane, placed between two working bodies made of TiO
x /20GDC (Ti-GDC) nanocomposites with Ti concentration of 38 mol%. The volumetric changes originating from oxidation or reduction in the local TiOx units are hypothesized to be the origin of mechanical deformation in the ECM actuator. Studying the Ti concentration-dependent structural changes in the Ti-GDC nanocomposites is therefore required for (i) understanding the mechanism of dimensional changes in the ECM actuator and (ii) maximizing the ECM response. Here, the systematic investigation of the local structure of the Ti and Ce ions in Ti-GDC over a broad range of Ti concentrations using synchrotron X-ray absorption spectroscopy and X-ray diffraction is reported. The main finding is that, depending on the Ti concentration, Ti atoms either form a cerium titanate or segregate into a TiO2anatase-like phase. The transition region between these two regimes with Ti(IV) concentration between 19% and 57% contained strongly disordered TiOx units dispersed in 20GDC containing Ce(III) and Ce(IV) and hence rich with oxygen vacancies. As a result, this transition region is proposed to be the most advantageous for developing ECM-active materials. -
In situ identification of surface sites in Cu–Pt bimetallic catalysts: Gas-induced metal segregationThe effect of gases on the surface composition of Cu–Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu–Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPt x /SBA-15 catalysts (x = 0–∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H 2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt 0.2 /SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt–Cu):(Pt–Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu–Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.more » « less