Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data from the NOAA Tail Doppler Radar (TDR) and University of Colorado Compact Raman Lidar (CRL) that were onboard the NOAA P-3 aircraft for flights around the southeastern United States for the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) 2018 campaign. Measurements include reflectivity and 3D winds from the TDR and profiles of temperature and mixing ratio from the CRL.more » « less
-
Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural net- works (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individu- ally. We present, in this paper, a roto-scale-translation equivariant CNN (RST-CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group con- volutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RS T equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data.more » « less
-
null (Ed.)Background: COVID-19 vaccines have been approved and made available. While questions of vaccine allocation strategies have received significant attention, important questions remain regarding the potential impact of the vaccine given uncertainties regarding efficacy against transmission, availability, timing, and durability. Methods: We adapted a susceptible-exposed-infectious-recovered (SEIR) model to examine the potential impact on hospitalization and mortality assuming increasing rates of vaccine efficacy, coverage, and administration. We also evaluated the uncertainty of the vaccine to prevent infectiousness as well as the impact on outcomes based on the timing of distribution and the potential effects of waning immunity. Findings: Increased vaccine efficacy against disease reduces hospitalizations and deaths from COVID-19; however, the relative benefit of transmission blocking varied depending on the timing of vaccine distribution. Early in an outbreak, a vaccine that reduces transmission will be relatively more effective than one introduced later in the outbreak. In addition, earlier and accelerated implementation of a less effective vaccine is more impactful than later implementation of a more effective vaccine. These findings are magnified when considering the durability of the vaccine. Vaccination in the spring will be less impactful when immunity is less durable. Interpretation: Policy choices regarding non-pharmaceutical interventions, such as social distancing and face mask use, will need to remain in place longer if the vaccine is less effective at reducing transmission or distributed slower. In addition, the stage of the local outbreak greatly impacts the overall effectiveness of the vaccine in a region and should be considered when allocating vaccines.more » « less
-
This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative rates and energy spectra variation among the near and far detectors gives and assuming the normal neutrino mass ordering, and for the inverted neutrino mass ordering. This estimate of is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields , which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result. Published by the American Physical Society2024more » « less
An official website of the United States government

Full Text Available