skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 2, 2025
  2. Abstract

    Artificial Intelligence is poised to transform the design of complex, large-scale detectors like ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical and geometric limits.This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E), employing state-of-the-art multiobjective optimization to tackle complex designs. Supported by the ePIC software stack and usingGeant4simulations, our approach benefits from transparent parameterization and advanced AI features.The workflow leverages the PanDA and iDDS systems, used in major experiments such as ATLAS at CERN LHC, the Rubin Observatory, and sPHENIX at RHIC, to manage the compute intensive demands of ePIC detector simulations. Tailored enhancements to the PanDA system focus on usability, scalability, automation, and monitoring.Ultimately, this project aims to establish a robust design capability, apply a distributed AI-assisted workflow to the ePIC detector, and extend its applications to the design of the second detector (Detector-2) in the EIC, as well as to calibration and alignment tasks. Additionally, we are developing advanced data science tools to efficiently navigate the complex, multidimensional trade-offs identified through this optimization process.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  3. Abstract

    The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract

    Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.

     
    more » « less
  5. Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems. 
    more » « less
  6. Ultrafast resonant soft x-ray scattering is used to monitor the dynamics of the charge density wave order in YBa 2 Cu 3 O 6+x . 
    more » « less
  7. ABSTRACT

    We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$ and 0.1 < z < 2, and the total sky coverage of the maps is $\approx 15\, 000 \deg ^2$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius.

     
    more » « less
  8. null (Ed.)
    Our understanding of the processes that control the burden and budget of tropospheric ozone has changed dramatically over the last 60 years. Models are the key tools used to understand these changes, and these underscore that there are many processes important in controlling the tropospheric ozone budget. In this critical review, we assess our evolving understanding of these processes, both physical and chemical. We review model simulations from the International Global Atmospheric Chemistry Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative to assess the changes in the tropospheric ozone burden and its budget from 1850 to 2010. Analysis of these data indicates that there has been significant growth in the ozone burden from 1850 to 2000 (approximately 43 ± 9%) but smaller growth between 1960 and 2000 (approximately 16 ± 10%) and that the models simulate burdens of ozone well within recent satellite estimates. The Chemistry Climate Modelling Initiative model ozone budgets indicate that the net chemical production of ozone in the troposphere plateaued in the 1990s and has not changed since then inspite of increases in the burden. There has been a shift in net ozone production in the troposphere being greatest in the northern mid and high latitudes to the northern tropics, driven by the regional evolution of precursor emissions. An analysis of the evolution of tropospheric ozone through the 21st century, as simulated by Climate Model Intercomparison Project Phase 5 models, reveals a large source of uncertainty associated with models themselves (i.e., in the way that they simulate the chemical and physical processes that control tropospheric ozone). This structural uncertainty is greatest in the near term (two to three decades), but emissions scenarios dominate uncertainty in the longer term (2050–2100) evolution of tropospheric ozone. This intrinsic model uncertainty prevents robust predictions of near-term changes in the tropospheric ozone burden, and we review how progress can be made to reduce this limitation. 
    more » « less