Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report a narrow-linewidth laser based on thin-film lithium tantalate (TFLT). The laser is composed of an InP reflective semiconductor optical amplifier gain chip hybrid integrated with a TFLT waveguide external cavity cladded with a silicon oxide extended Bragg grating. The single-frequency laser device achieves an on-chip output power of approximately 26 mW and an intrinsic Lorentzian linewidth of ~94 Hz. These results highlight the great potential of TFLT for integrated photonic laser applications, enabling high-coherence and high-power laser sources in a compact platform.more » « less
- 
            Abstract The invention of the laser unleashed the potential of optical metrology, leading to numerous advancements in modern science and technology. This reliance on lasers, however, also introduces a bottleneck for precision optical metrology, as it requires sophisticated photonic infrastructure for precise laser-wave control, leading to limited metrology performance and significant system complexity. Here, we take a key step toward overcoming this challenge by demonstrating a Pockels laser with multifunctional capabilities that elevate optical metrology to a new level. The chip-scale laser achieves a narrow intrinsic linewidth down to 167 Hz and a broad mode-hop-free tuning range up to 24 GHz. In particular, it delivers an unprecedented frequency chirping rate of up to 20 EHz/s and an exceptional modulation bandwidth exceeding 10 GHz, both of which are orders of magnitude greater than those of existing lasers. Leveraging this laser, we successfully achieve velocimetry at 40 m/s over a short distance of 0.4 m, and measurable velocities up to the first cosmic velocity at 1 m away—a feat unattainable with conventional ranging approaches. At the same time, we achieve distance metrology with a ranging resolution of <2 cm. Furthermore, for the first time to our knowledge, we implement a dramatically simplified architecture for laser frequency stabilization by directly locking the laser to an external reference gas cell without requiring additional external light control. This approach enables long-term laser stability with a frequency fluctuation of only ±6.5 MHz over 60 min. The demonstrated Pockels laser combines elegantly high laser coherence with ultrafast frequency reconfigurability and superior multifunctional capability. We envision its profound impact across diverse fields including communication, sensing, autonomous driving, quantum information processing, and beyond.more » « less
- 
            Abstract Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.more » « less
- 
            BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet.more » « less
- 
            Photonic quantum information processing and communication demand highly integrated device platforms, which can offer high-fidelity control of quantum states and seamless interface with fiber-optic networks simultaneously. Exploiting the unique quantum emitter characteristics compatible with photonic transduction, combined with the outstanding nonlinear optical properties of silicon carbide (SiC), we propose and numerically investigate a single-crystal cubic SiC-on-insulator (3C-SiCOI) platform toward multi-functional integrated quantum photonic circuit. Benchmarking with the state-of-the-art demonstrations on individual components, we have systematically engineered and optimized device specifications and functions, including state control via cavity quantum electrodynamics and frequency conversion between quantum emission and telecommunication wavelengths, while also considering the manufacturing aspects. This work will provide concrete guidelines and quantitative design considerations for realizing future SiCOI integrated photonic circuitry toward quantum information applications.more » « less
- 
            High-fidelity periodic poling over long lengths is required for robust, quasi-phase-matched second-harmonic generation using the fundamental, quasi-TE polarized waveguide modes in a thin-film lithium niobate (TFLN) waveguide. Here, a shallow-etched ridge waveguide is fabricated in x-cut magnesium oxide doped TFLN and is poled accurately over 5 mm. The high fidelity of the poling is demonstrated over long lengths using a non-destructive technique of confocal scanning second-harmonic microscopy. We report a second-harmonic conversion efficiency of up to 939 %.W−1(length-normalized conversion efficiency 3757 %.W−1.cm−2), measured at telecommunications wavelengths. The device demonstrates a narrow spectral linewidth (1 nm) and can be tuned precisely with a tuning characteristic of 0.1 nm/°C, over at least 40 °C without measurable loss of efficiency.more » « less
- 
            Abstract Recent advances in of soliton microcombs have shown great promise to revolutionize many important areas such as optical communication, spectroscopic sensing, optical clock, and frequency synthesis. A largely tunable comb line spacing is crucial for the practical application of soliton microcombs, which unfortunately is challenging to realize for an on‐chip monolithic microresonators. The recently discovered perfect soliton crystal (PSC) offers a convenient route to tune the comb line spacing. However, excitation of a PSC is generally stochastic by its nature and accessing a certain PSC state requires delicate tuning procedure. Here the on‐demand generation of PSCs in a lithium niobate microresonator is demonstrated. The unique device characteristics allow to produce a variety of PSCs and to switch between different PSC states, deterministically and repetitively. The device is utilized to show arbitrary dialing of the comb line spacing from 1 to 11 times of the free‐spectral range of the resonator. The demonstration of PSCs on demand may now open up a great avenue for flexibly controlling the repetition rate of soliton pulses, which would significantly enhance and extend the application potential of soliton microcombs for communication, signal processing, and sensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available