skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Xiaomao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Abstract Warm temperatures due to increases of greenhouse gas emissions have changed temperature distribution patterns especially for their extremes, which negatively affect crop yields. However, the assessment of these negative impacts remains unclear when surface precipitation patterns are shifted. Using a statistical model along with 23,944 county-year maize-yield data during 1981–2020 in the US Corn Belt, we found that the occurrence of timely precipitation reduced the sensitivity of maize yields to extreme heat by an average of 20% during the growing season with variations across phenological periods. Spatially across the US corn belt, maize in the northern region exhibited more significant benefits from timely precipitation compared to the southern region, despite the pronounced negative effects of extreme heat on yields in cooler regions. This study underscores the necessity of incorporating timely precipitation as a pivotal factor in estimating heat effects under evolving climates, offering valuable insights into complex climate-related challenges. 
    more » « less
  3. The changing climate and the projected increase in the variability and frequency of extreme events make accurate predictions of crop yield critically important for addressing emerging challenges to food security. Accurate and timely crop yield predictions offer invaluable insights to agronomists, producers, and decision-makers. Even without considering climate change, several factors including the environment, management, genetics, and their complex interactions make such predictions formidably challenging. This study introduced a statistical-based multiple linear regression (MLR) model for the forecasting of rainfed maize yields in Kansas. The model’s performance is assessed by comparing its predictions with those generated using the Decision Support System for Agrotechnology Transfer (DSSAT), a process-based model. This evaluated the impact of synthetic climate change scenarios of 1 and 2 °C temperature rises on maize yield predictions. For analysis, 40 years of historic weather, soil, and crop management data were collected and converted to model-compatible formats to simulate and compare maize yield using both models. The MLR model’s predicted yields (r = 0.93) had a stronger association with observed yields than the DSSAT’s simulated yields (r = 0.70). A climate change impact analysis showed that the DSSAT predicted an 8.7% reduction in rainfed maize yield for a 1 °C temperature rise and an 18.3% reduction for a 2 °C rise. The MLR model predicted a nearly 6% reduction in both scenarios. Due to the extreme heat effect, the predicted impacts under uniform climate change scenarios were considerably more severe for the process-based model than for the statistical-based model. 
    more » « less
  4. Abstract. The Coupled Model Intercomparison Project Phase 7 (CMIP7) undertook an extensive process to gather community input and refine data requests related to impacts and adaptation applications of Earth System Model (ESM) outputs. The Impacts and Adaptation (I&A) Data Request Team worked with CMIP7 leadership to distribute an open solicitation across many communities that use climate model outputs requesting inputs for new and existing variables, the most applicable temporal characteristics, and groupings of variables that together allow for specific application opportunities. This input was then collated and translated into CMIP7 standard templates for inclusion in the broader data request, leading to 13 I&A data request opportunities, 60 variable groups and 539 unique variables sought by vulnerability, impacts, adaptation, and climate services user communities. Here, we describe these opportunities and variable groups, as well as new insights into how ESM groups can prioritize outputs that set off a chain of further analyses, ultimately informing decisions impacting society and natural systems. These include an emphasis on high-resolution outputs to allow further modeling of climate impacts at regional and local scales, improved representation of extreme weather events, enhanced accuracy of downscaling and bias-adjustment techniques, and support for more detailed assessments for decision-making in adaptation and mitigation strategies. There is also broad interest in more extensive provisioning of two-dimensional variables at the Earth's surface, prioritizing experiments that enhance our understanding of both the recent past and future scenarios, and providing outputs that allow further downscaling and bias adjustment. We emphasize that variable groups are the fundamental level at which to engage with the I&A data request, matching the scale of input and the way output provision enables specific I&A applications. Given resource constraints, we applaud CMIP7 efforts to foster strong engagement and communication between ESM groups and the I&A team to build consensus around prudent compromises in priority variables, temporal resolutions, simulation experiments, time subsets, and ensemble members. 
    more » « less
  5. Abstract Climate extremes cause significant winter wheat yield loss and can cause much greater impacts than single extremes in isolation when multiple extremes occur simultaneously. Here we show that compound hot-dry-windy events (HDW) significantly increased in the U.S. Great Plains from 1982 to 2020. These HDW events were the most impactful drivers for wheat yield loss, accounting for a 4% yield reduction per 10 h of HDW during heading to maturity. Current HDW trends are associated with yield reduction rates of up to 0.09 t ha−1per decade and HDW variations are atmospheric-bridged with the Pacific Decadal Oscillation. We quantify the “yield shock”, which is spatially distributed, with the losses in severely HDW-affected areas, presumably the same areas affected by the Dust Bowl of the 1930s. Our findings indicate that compound HDW, which traditional risk assessments overlooked, have significant implications for the U.S. winter wheat production and beyond. 
    more » « less