skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Xiaopei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physical transport dynamics occurring at the ocean mesoscale (~ 20 km – 200 km) largely determine the environment in which biogeochemical processes occur. As a result, understanding and modeling mesoscale transport is crucial for determining the physical modulations of the marine ecosystem. This review synthesizes current knowledge of mesoscale eddies and their impacts on the marine ecosystem across most of the North Pacific and its marginal Seas. The North Pacific domain north of 20°N is divided in four regions, and for each region known, unknowns and known-unknowns are summarized with a focus on physical properties, physical-biogeochemical interactions, and the impacts of climate variability and change on the eddy field and on the marine ecosystem. 
    more » « less
  2. null (Ed.)
    Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only by the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability. 
    more » « less
  3. A decades-long affair Decadal climate variability and change affects nearly every aspect of our world, including weather, agriculture, ecosystems, and the economy. Predicting its expression is thus of critical importance on multiple fronts. Poweret al. review what is known about tropical Pacific decadal climate variability and change, the degree to which it can be simulated and predicted, and how we might improve our understanding of it. More accurate projections will require longer and more detailed instrumental and paleoclimate records, improved climate models, and better data assimilation methods. —HJS 
    more » « less
  4. null (Ed.)