skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Xue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 2, 2025
  2. Free, publicly-accessible full text available May 30, 2025
  3. With the ever-increasing popularity of edge devices, it is necessary to implement real-time segmentation on the edge for autonomous driving and many other applications. Vision Transformers (ViTs) have shown considerably stronger results for many vision tasks. However, ViTs with the fullattention mechanism usually consume a large number of computational resources, leading to difficulties for realtime inference on edge devices. In this paper, we aim to derive ViTs with fewer computations and fast inference speed to facilitate the dense prediction of semantic segmentation on edge devices. To achieve this, we propose a pruning parameterization method to formulate the pruning problem of semantic segmentation. Then we adopt a bi-level optimization method to solve this problem with the help of implicit gradients. Our experimental results demonstrate that we can achieve 38.9 mIoU on ADE20K val with a speed of 56.5 FPS on Samsung S21, which is the highest mIoU under the same computation constraint with real-time inference. 
    more » « less