skip to main content


Search for: All records

Creators/Authors contains: "Lin, Xueyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate performance of Li-S batteries. Herein, we report a freestanding electrocatalytic sulfur host consisting of hydrogen-treated VO2 nanoparticles (H-VO2) anchored on nitrogen-doped carbonized bacterial cellulose aerogels (N-CBC). The hydrogen treatment enables the formation and stabilization of the rutile VO2(R) phase with metallic conductivity at room temperature, significantly enhancing its catalytic capability compared to the as-synthesized insulative VO2(M) phase. Several measurements characterize the electrocatalytic performance of this unique H-VO2@N-CBC structure. In particular, the two kinetic barriers between S8, polysulfides, and Li2S are largely reduced by 28.2 and 43.3 kJ/mol, respectively. Accordingly, the Li-S battery performance, in terms of sulfur utilization and charge/discharge rate, is greatly improved. This work suggests an effective strategy to develop conductive catalysts based on a typical transition metal oxide (VO2) for Li-S batteries. 
    more » « less
  5. Abstract

    An ultra‐fast electrochemical capacitor (EC) designed for efficient ripple current smoothing was fabricated using vertically oriented MoS2(VOM) nanoflakes deposited on freestanding carbonized cellulose (CC) sheets as electrodes. The daily used cellulose tissue sheets were transformed into electrode scaffolds through a rapid pyrolysis process within a preheated furnace, on which VOM nanoflakes were formed in a conventional hydrothermal process. With these ~10 μm thick VOM‐CC electrodes, ultrafast ECs with tunable frequency response and specific capacitance density were fabricated. The ECs with a cell‐level areal capacitance density of 0.8 mF/cm2at 120 Hz were demonstrated for ripple current filtering from 60 Hz to 60 kHz. At a lower frequency response level, EC cell with a large capacitance density of 4.8 mF/cm2was also demonstrated. With the facile and easily scaled up process to producing the nanostructured electrode, the miniaturized VOM‐CC based ECs have the potential to substitute the bulky aluminum electrolytic capacitors for current smoothing and pulse power applications.

     
    more » « less