skip to main content


Search for: All records

Creators/Authors contains: "Littman, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks. 
    more » « less
  2. Trigger-action programming (TAP) empowers a wide array of users to automate Internet of Things (IoT) devices. However, it can be challenging for users to create completely correct trigger-action programs (TAPs) on the first try, necessitating debugging. While TAP has received substantial research attention, TAP debugging has not. In this paper, we present the first empirical study of users’ end-to-end TAP debugging process, focusing on obstacles users face in debugging TAPs and how well users ultimately fix incorrect automations. To enable this study, we added TAP capabilities to an existing 3-D smart home simulator. Thirty remote participants spent a total of 84 hours debugging TAPs using this simulator. Without additional support, participants were often unable to fix buggy TAPs due to a series of obstacles we document. However, we also found that two novel tools we developed helped participants overcome many of these obstacles and more successfully debug TAPs. These tools collect either implicit or explicit feedback from users about automations that should or should not have happened in the past, using a SAT-solving-based algorithm we developed to automatically modify the TAPs to account for this feedback. 
    more » « less
  3. In recent years, researchers have made significant progress in devising reinforcement-learning algorithms for optimizing linear temporal logic (LTL) objectives and LTL-like objectives.Despite these advancements, there are fundamental limitations to how well this problem can be solved. Previous studies have alluded to this fact but have not examined it in depth.In this paper, we address the tractability of reinforcement learning for general LTL objectives from a theoretical perspective.We formalize the problem under the probably approximately correct learning in Markov decision processes (PAC-MDP) framework, a standard framework for measuring sample complexity in reinforcement learning.In this formalization, we prove that the optimal policy for any LTL formula is PAC-MDP-learnable if and only if the formula is in the most limited class in the LTL hierarchy, consisting of formulas that are decidable within a finite horizon.Practically, our result implies that it is impossible for a reinforcement-learning algorithm to obtain a PAC-MDP guarantee on the performance of its learned policy after finitely many interactions with an unconstrained environment for LTL objectives that are not decidable within a finite horizon.

     
    more » « less
  4. Reinforcement learning (RL) can help agents learn complex tasks that would be hard to specify using standard imperative programming. However, end users may have trouble personalizing their technology using RL due to a lack of technical expertise. Prior work has explored means of supporting end users after a problem for the RL agent to solve has been defined. Little work, however, has explored how to support end users when defining this problem. We propose a tool to provide structured support for end users defining problems for RL agents. Through this tool, users can (i) directly and indirectly specify the problem as a Markov decision process (MDP); (ii) receive automatic suggestions on possible MDP changes that would enhance training time and accuracy; and (iii) revise the MDP after training the agent to solve it. We believe this work will help reduce barriers to using RL and contribute to the existing literature on designing human-in-the-loop systems. 
    more » « less
  5. Experiences discovering attempts to subvert the peer-review process. 
    more » « less
  6. In the context of data labeling, NLP researchers are increasingly interested in having humans select rationales, a subset of input tokens relevant to the chosen label. We conducted a 332-participant online user study to understand how humans select rationales, especially how different instructions and user interface affordances impact the rationales chosen. Participants labeled ten movie reviews as positive or negative, selecting words and phrases supporting their label as rationales. We varied the instructions given, the rationale-selection task, and the user interface. Participants often selected about 12\% of input tokens as rationales, but selected fewer if unable to drag over multiple tokens at once. Whereas participants were near unanimous in their data labels, they were far less consistent in their rationales. The user interface affordances and task greatly impacted the types of rationales chosen. We also observed large variance across participants. 
    more » « less
  7. null (Ed.)
    Trigger-action programming (if-this-then-that rules) empowers non-technical users to automate services and smart devices. As a user's set of trigger-action programs evolves, the user must reason about behavior differences between similar programs, such as between an original program and several modification candidates, to select programs that meet their goals. To facilitate this process, we co-designed user interfaces and underlying algorithms to highlight differences between trigger-action programs. Our novel approaches leverage formal methods to efficiently identify and visualize differences in program outcomes or abstract properties. We also implemented a traditional interface that shows only syntax differences in the rules themselves. In a between-subjects online experiment with 107 participants, the novel interfaces better enabled participants to select trigger-action programs matching intended goals in complex, yet realistic, situations that proved very difficult when using traditional interfaces showing syntax differences. 
    more » « less