skip to main content

Search for: All records

Creators/Authors contains: "Liu, Feng-Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with entropy below 1/2 of their length. Constructions were previously only known for both primitives assuming random oracles or a common reference string (CRS). Along the way, we define a new primitive called a nonmalleable point function obfuscation with associated data. The associated data is public but protected from all tampering. We use the same paradigm to then extend this to digital lockers. Our constructions achieve nonmalleability over the output point by placing a CRS into the associated data and using an appropriate non-interactive zero-knowledge proof. Tampering is protected against the input point over low-degree polynomials and over any tampering to the output point and associated data. Our constructions achieve virtual black box security. These constructions are then used to create robust fuzzy extractors that can support low-entropy sources in the plain model. By using the geometric structure of a syndrome secure sketch (Dodis et al., SIAM Journal on Computing 2008), the adversary’s tampering function can always be expressed as a low-degree polynomial; thus, the protection provided by the constructed nonmalleable objects suffices. 
    more » « less
  2. null (Ed.)
    In this work, we conduct a comprehensive study on establishing hardness reductions for (Module) Learning with Rounding over rings (RLWR). Towards this, we present an algebraic framework of LWR, inspired by a recent work of Peikert and Pepin (TCC ’19). Then we show a search-to-decision reduction for Ring-LWR, generalizing a result in the plain LWR setting by Bogdanov et al. (TCC ’15). Finally, we show a reduction from Ring-LWE to Module Ring-LWR (even for leaky secrets), generalizing the plain LWE to LWR reduction by Alwen et al. (Crypto ’13). One of our central techniques is a new ring leftover hash lemma, which might be of independent interests. 
    more » « less
  3. null (Ed.)