skip to main content


Search for: All records

Creators/Authors contains: "Liu, Hauyu Baobab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have comprehensively studied the multiscale physical properties of the massive infrared dark cloud G28.34 (the Dragon cloud) with dust polarization and molecular line data from Planck, FCRAO-14 m, James Clerk Maxwell Telescope, and Atacama Large Millimeter/submillimeter Array. We find that the averaged magnetic fields of clumps tend to be either parallel with or perpendicular to the cloud-scale magnetic fields, while the cores in clump MM4 tend to have magnetic fields aligned with the clump fields. Implementing the relative orientation analysis (for magnetic fields, column density gradients, and local gravity), velocity gradient technique, and modified Davis–Chandrasekhar–Fermi analysis, we find that G28.34 is located in a trans-to-sub-Alfvénic environment; the magnetic field is effectively resisting gravitational collapse in large-scale diffuse gas, but is distorted by gravity within the cloud and affected by star formation activities in high-density regions, and the normalized mass-to-flux ratio tends to increase with increasing density and decreasing radius. Considering the thermal, magnetic, and turbulent supports, we find that the environmental gas of G28.34 is in a supervirial (supported) state, the infrared dark clumps may be in a near-equilibrium state, and core MM4-core4 is in a subvirial (gravity-dominant) state. In summary, we suggest that magnetic fields dominate gravity and turbulence in the cloud environment at large scales, resulting in relatively slow cloud formation and evolution processes. Within the cloud, gravity could overwhelm both magnetic fields and turbulence, allowing local dynamical star formation to happen.

     
    more » « less
    Free, publicly-accessible full text available April 29, 2025
  2. Abstract

    RZ Piscium (RZ Psc) is well known in the variable star field because of its numerous irregular optical dips in the past 5 decades, but the nature of the system is heavily debated in the literature. We present multiyear infrared monitoring data from Spitzer and WISE to track the activities of the inner debris production, revealing stochastic infrared variability as short as weekly timescales that is consistent with destroying a 90 km sized asteroid every year. ALMA 1.3 mm data combined with spectral energy distribution modeling show that the disk is compact (∼0.1–13 au radially) and lacks cold gas. The disk is found to be highly inclined and has a significant vertical scale height. These observations confirm that RZ Psc hosts a close to edge-on, highly perturbed debris disk possibly due to migration of recently formed giant planets that might be triggered by the low-mass companion RZ Psc B if the planets formed well beyond the snowlines.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Context.Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions.

    Aims.Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width.

    Methods.We observed NH3metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence.

    Results.Analysis of the turbulence distribution histogram for 32 identified NH3cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub- and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Abstract

    We use molecular line data from the Atacama Large Millimeter/submillimeter Array, Submillimeter Array, James Clerk Maxwell Telescope, and NANTEN2 to study the multiscale (∼15–0.005 pc) velocity statistics in the massive star formation region NGC 6334. We find that the nonthermal motions revealed by the velocity dispersion function (VDF) stay supersonic over scales of several orders of magnitude. The multiscale nonthermal motions revealed by different instruments do not follow the same continuous power law, which is because the massive star formation activities near central young stellar objects have increased the nonthermal motions in small-scale and high-density regions. The magnitudes of VDFs vary in different gas materials at the same scale, where the infrared dark clump N6334S in an early evolutionary stage shows a lower level of nonthermal motions than other more evolved clumps due to its more quiescent star formation activity. We find possible signs of small-scale-driven (e.g., by gravitational accretion or outflows) supersonic turbulence in clump N6334IV with a three-point VDF analysis. Our results clearly show that the scaling relation of velocity fields in NGC 6334 deviates from a continuous and universal turbulence cascade due to massive star formation activities.

     
    more » « less
  5. Abstract

    In this study, we reported the results of high-resolution (${0{^{\prime \prime}_{.}}14}$) Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 225 GHz dust continuum and CO molecular emission lines from the transitional disk around SY Cha. Our high-resolution observations clearly revealed the inner cavity and the central point source for the first time. The radial profile of the ring can be approximated by a bright narrow ring superimposed on a fainter wide ring. Furthermore, we found that there is a weak azimuthal asymmetry in dust continuum emission. For gas emissions, we detected 12CO(2–1), 13CO(2–1), and C18O(2–1), from which we estimated the total gas mass of the disk to be 2.2 × 10−4 M ⊙ , assuming a CO/H2 ratio of 10−4. The observations showed that the gas is present inside the dust cavity. The analysis of the velocity structure of the 12CO(2–1) emission line revealed that the velocity is distorted at the location of the dust inner disk, which may be owing to a warping of the disk or radial gas flow within the cavity of the dust disk. High-resolution observations of SY Cha showed that this system is composed of a ring and a distorted inner disk, which may be common, as indicated by the survey of transitional disk systems at a resolution of ${\sim}{0{^{\prime \prime}_{.}}1}$.

     
    more » « less
  6. Abstract

    We present ALMA dust polarization and molecular line observations toward four clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (θB), column density gradients (θNG), local gravity (θLG), and velocity gradients (θVG) to investigate the multi-scale (from ∼30 to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation betweenθBandθNGchanges from statistically more perpendicular to parallel as column density (NH2) increases, which is a signature of trans-to-sub-Alfvénic turbulence at complex/cloud scales as revealed by previous numerical studies. BecauseθNGandθLGare preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment betweenθBandθNGat higherNH2is because the magnetic field line is dragged by gravity. At even higherNH2, the angle betweenθBandθNGorθLGtransits back to having no preferred orientation, or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found betweenθBandθVGthroughout our studiedNH2range, which indicates a trans-to-sub-Alfvénic state at small scales as well, and this signifies that magnetic field has an important role in the star formation process in NGC 6334. The normalized mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases withNH2, but the KTH method may fail at highNH2due to the impact of star formation feedback.

     
    more » « less
  7. Abstract

    Characterizing the physical conditions at disk scales in class 0 sources is crucial for constraining the protostellar accretion process and the initial conditions for planet formation. We use ALMA 1.3 and 3 mm observations to investigate the physical conditions of the dust around the class 0 binary IRAS 16293–2422 A down to ∼10 au scales. The circumbinary material’s spectral index,α, has a median of 3.1 and a dispersion of ∼0.2, providing no firm evidence of millimeter-sized grains therein. Continuum substructures with brightness temperature peaks ofTb∼ 60–80 K at 1.3 mm are observed near the disks at both wavelengths. These peaks do not overlap with strong variations ofα, indicating that they trace high-temperature spots instead of regions with significant optical depth variations. The lower limits to the inferred dust temperature in the hot spots are 122, 87, and 49 K. Depending on the assumed dust opacity index, these values can be several times higher. They overlap with high gas temperatures and enhanced complex organic molecular emission. This newly resolved dust temperature distribution is in better agreement with the expectations from mechanical instead of the most commonly assumed radiative heating. In particular, we find that the temperatures agree with shock heating predictions. This evidence and recent studies highlighting accretion heating in class 0 disks suggest that mechanical heating (shocks, dissipation powered by accretion, etc.) is important during the early stages and should be considered when modeling and measuring properties of deeply embedded protostars and disks.

     
    more » « less
  8. Abstract

    We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (r≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hiiregion G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesMfrom 120 to 200M, with much smaller ionized-gas massesMion-gas= 0.2–0.25M. The stellar mass is distributed within the gravitational radiusRg≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi= 49°–56°. Radial motions at radiir>Rgconverge tovr,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withMstar= 32–60M, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic center. Stellar interactions are likely to occur within the next million years.

     
    more » « less