Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Context.An accurate28P(p,γ)29S reaction rate is crucial to defining the nucleosynthesis products of explosive hydrogen burning in ONe novae. Using the recently released nuclear mass of29S, together with a shell model and a direct capture calculation, we reanalyzed the28P(p,γ)29S thermonuclear reaction rate and its astrophysical implication. Aims.We focus on improving the astrophysical rate for28P(p,γ)29S based on the newest nuclear mass data. Our goal is to explore the impact of the new rate and associated uncertainties on the nova nucleosynthesis. Methods.We evaluated this reaction rate via the sum of the isolated resonance contribution instead of the previously used Hauser-Feshbach statistical model. The corresponding rate uncertainty at different energies was derived using a Monte Carlo method. Nova nucleosynthesis is computed with the 1D hydrodynamic code SHIVA. Results.The contribution from the capture on the first excited state at 105.64 keV in28P is taken into account for the first time. We find that the capture rate on the first excited state in28P is up to more than 12 times larger than the ground-state capture rate in the temperature region of 2.5 × 107K to 4 × 108K, resulting in the total28P(p,γ)29S reaction rate being enhanced by a factor of up to 1.4 at ~1 × 109K. In addition, the rate uncertainty has been quantified for the first time. It is found that the new rate is smaller than the previous statistical model rates, but it still agrees with them within uncertainties for nova temperatures. The statistical model appears to be roughly valid for the rate estimation of this reaction in the nova nucleosynthesis scenario. Using the 1D hydrodynamic code SHIVA, we performed the nucleosynthesis calculations in a nova explosion to investigate the impact of the new rates of28P(p,γ)29S. Our calculations show that the nova abundance pattern is only marginally affected if we use our new rates with respect to the same simulations but statistical model rates. Finally, the isotopes whose abundance is most influenced by the present28P(p,γ)29S uncertainty are28Si,33,34S,35,37Cl, and36Ar, with relative abundance changes at the level of only 3% to 4%.more » « less
- 
            Context.Accurate42Ti(p,γ)43V reaction rates are crucial for understanding the nucleosynthesis path of the rapid capture process (rpprocess) that occurs in X-ray bursts. Aims.We aim to improve the thermonuclear rates of42Ti(p,γ)43V based on more complete resonance information and a more accurate direct component, together with the recently released nuclear masses data. We also explore the impact of the newly obtained rates on therpprocess. Methods.We reevaluated the reaction rate of42Ti(p,γ)43V by the sum of the isolated resonance contribution instead of the Hauser-Feshbach statistical model. We used a Monte Carlo method to derive the associated uncertainties of new rates. The nucleosynthesis simulations were performed via the NuGrid post-processing code ppn. Results.The new rates differ from previous estimations due to the use of a series of updated resonance parameters and a direct S factor. Compared with the previous results from the Hauser-Feshbach statistical model, which assumes compound nucleus43V with a sufficiently high-level density in the energy region of astrophysical interest, large differences exist over the entire temperature region ofrp-process interest, up to two orders of magnitude. We consistently calculated the photodisintegration rate using our new nuclear masses via the detailed balance principle, and found the discrepancies among the different reverse rates are much larger than those for the forward rate, up to ten orders of magnitude at the temperature of 108K. Using a trajectory with a peak temperature of 1.95×109K, we performed therp-process nucleosynthesis simulations to investigate the impact of the new rates. Our calculations show that the adoption of the new forward and reverse rates result in abundance variations for Sc and Ca of 128% and 49%, respectively, compared to the variations for the statistical model rates. On the other hand, the overall abundance pattern is not significantly affected. The results of using new rates also confirm that therp-process path does not bypass the isotope43V. Conclusions.Our study found that the Hauser-Feshbach statistical model is inappropriate to the reaction rate evaluation for42Ti(p,γ)43V. The adoption of the new rates confirms that the reaction path of42Ti(p,γ)43V(p,γ)44Cr(β+)44V is a key branch of therpprocess in X-ray bursts.more » « less
- 
            New 26 P(p, γ) 27 S Thermonuclear Reaction Rate and Its Astrophysical Implications in the rp-processAbstract Accurate nuclear reaction rates for26P(p,γ)27S are pivotal for a comprehensive understanding of therp-process nucleosynthesis path in the region of proton-rich sulfur and phosphorus isotopes. However, large uncertainties still exist in the current rate of26P(p,γ)27S because of the lack of nuclear mass and energy level structure information for27S. We reevaluate this reaction rate using the experimentally constrained27S mass, together with the shell model predicted level structure. It is found that the26P(p,γ)27S reaction rate is dominated by a direct capture reaction mechanism despite the presence of three resonances atE= 1.104, 1.597, and 1.777 MeV above the proton threshold in27S. The new rate is overall smaller than the other previous rates from the Hauser–Feshbach statistical model by at least 1 order of magnitude in the temperature range of X-ray burst interest. In addition, we consistently update the photodisintegration rate using the new27S mass. The influence of new rates of forward and reverse reaction in the abundances of isotopes produced in therp-process is explored by postprocessing nucleosynthesis calculations. The final abundance ratio of27S/26P obtained using the new rates is only 10% of that from the old rate. The abundance flow calculations show that the reaction path26P(p,γ)27S(β+,ν)27P is not as important as previously thought for producing27P. The adoption of the new reaction rates for26P(p,γ)27S only reduces the final production of aluminum by 7.1% and has no discernible impact on the yield of other elements.more » « less
- 
            This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
- 
            A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ ) and charm quarks (H→$$ c\overline{c} $$ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ andH→$$ c\overline{c} $$ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            A<sc>bstract</sc> Differential measurements of Higgs boson production in theτ-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF),VHand$$ t\overline{t}H $$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb−1of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: theSimplified Template Cross-Section(STXS) approach and anUnfolded Fiducial Differentialmeasurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson’s transverse momentum ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ ), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets (mjj). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction formjj> 1.5 TeV and$$ {p}_{\textrm{T}}^{\textrm{H}} $$ > 200 GeV ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ < 200 GeV) is$$ {1.29}_{-0.34}^{+0.39} $$ ($$ {0.12}_{-0.33}^{+0.34} $$ ). This is the first VBF measurement for the higher-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria, and the most precise for the lower-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria. Thefiducialcross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed ∆ϕjjbetween the two leading jets. The measurements have a precision of 30%–50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient$$ {c}_{H\overset{\sim }{W}} $$ .more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            A search is performed for dark matter particles produced in association with a resonantly produced pair of b-quarks with 30 < mbb < 150 GeV using 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. This signature is expected in extensions of the standard model predicting the production of dark matter particles, in particular those containing a dark Higgs boson s that decays into bb¯. The highly boosted s → bb¯ topology is reconstructed using jet reclustering and a new identification algorithm. This search places stringent constraints across regions of the dark Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs bosons with masses between 30 and 150 GeV in benchmark scenarios with Z0 mediator masses up to 4.8 TeV at 95% confidence level.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            A<sc>bstract</sc> The paper presents a search for supersymmetric particles produced in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb−1. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle$$ {\overset{\sim }{\chi}}_1^0 $$ , is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of$$ {\overset{\sim }{\chi}}_1^0 $$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.more » « lessFree, publicly-accessible full text available February 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
