skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Liu, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2024
  2. Free, publicly-accessible full text available December 10, 2024
  3. Free, publicly-accessible full text available December 10, 2024
  4. Free, publicly-accessible full text available December 10, 2024
  5. Free, publicly-accessible full text available October 23, 2024
  6. Free, publicly-accessible full text available October 23, 2024
  7. Free, publicly-accessible full text available December 10, 2024
  8. Free, publicly-accessible full text available September 1, 2024

    We present cosmological constraints derived from peak counts, minimum counts, and the angular power spectrum of the Subaru Hyper Suprime-Cam first-year (HSC Y1) weak lensing shear catalogue. Weak lensing peak and minimum counts contain non-Gaussian information and hence are complementary to the conventional two-point statistics in constraining cosmology. In this work, we forward-model the three summary statistics and their dependence on cosmology, using a suite of N-body simulations tailored to the HSC Y1 data. We investigate systematic and astrophysical effects including intrinsic alignments, baryon feedback, multiplicative bias, and photometric redshift uncertainties. We mitigate the impact of these systematics by applying cuts on angular scales, smoothing scales, signal-to-noise ratio bins, and tomographic redshift bins. By combining peaks, minima, and the power spectrum, assuming a flat-ΛCDM model, we obtain $S_{8} \equiv \sigma _8\sqrt{\Omega _m/0.3}= 0.810^{+0.022}_{-0.026}$, a 35 per cent tighter constraint than that obtained from the angular power spectrum alone. Our results are in agreement with other studies using HSC weak lensing shear data, as well as with Planck 2018 cosmology and recent CMB lensing constraints from the Atacama Cosmology Telescope and the South Pole Telescope.

    more » « less
  10. Electronic devicesforrecording neuralactivityinthe nervoussyste m needto bescalableacrosslargespatialandte mporalscales whilealso providing millisecondandsingle-cellspatiote mporalresolution. H o w e v e r, e xi s ti n g hi g h- r e s ol u ti o n n e u r al r e c o r di n g d e vi c e s c a n n o t achievesi multaneousscalability on bothspatialandte mporallevels due toatrade-offbetweensensordensityand mechanicalflexibility. Here weintroduceathree-di mensional(3D)stackingi mplantableelectronic platfor m,basedonperfluorinateddielectricelasto mersandtissue-levelsoft multilayerelectrodes,thatenablesspatiote mporallyscalablesingle-cell neuralelectrophysiologyinthenervoussyste m. Ourelasto mersexhibit stable dielectric perfor mancefor overayearin physiologicalsolutions andare10,000ti messofterthanconventional plastic dielectrics. By leveragingthese uniquecharacteristics we developthe packaging of lithographednano metre-thickelectrodearraysina3Dconfiguration with across-sectionaldensityof7.6electrodesper100μ m2.Theresulting3D integrated multilayersoftelectrodearrayretainstissue-levelflexibility, reducingchronici m muneresponsesin mouse neuraltissues,and de monstratestheabilitytoreliablytrackelectricalactivityinthe mouse brain orspinalcord over months without disruptingani mal behaviour. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025