skip to main content

Search for: All records

Creators/Authors contains: "Liu, Kefei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can unveil complementary information from multiple imaging modalities and further our understanding of the disease. One application is to discover disease subtypes using unsupervised clustering. However, existing clustering methods are often applied to input features directly, and could suffer from the curse of dimensionality with high-dimensional multimodal data. The purpose of our study is to identify multimodal imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a multiview learning framework based on Deep Generalized Canonical Correlation Analysis (DGCCA), to learn shared latent representation with low dimensions from 3 neuroimaging modalities.


    DGCCA applies non-linear transformation to input views using neural networks and is able to learn correlated embeddings with low dimensions that capture more variance than its linear counterpart, generalized CCA (GCCA). We designed experiments to compare DGCCA embeddings with single modality features and GCCA embeddings by generating 2 subtypes from each feature set using unsupervised clustering. In our validation studies, we found that amyloid PET imaging has the most discriminative features compared with structural MRI and FDG PET which DGCCA learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive assessments, 6 brain volume measures, and conversion to AD patterns. In addition, DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing late MCI group did not identify.


    Overall, DGCCA is able to learn effective low dimensional embeddings from multimodal data by learning non-linear projections. MCI subtypes generated from DGCCA embeddings are different from existing early and late MCI groups and show most similarity with those identified by amyloid PET features. In our validation studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, and are able to identify AD genetic markers. These findings indicate the promise of the imaging-driven subtypes and their power in revealing disease structures beyond early and late stage MCI.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Brain imaging genetics studies the genetic basis of brain structures and functionalities via integrating genotypic data such as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise univariate analysis. MTL methods generally incorporate a few of QTs and could not select features from multiple QTs; while SCCA methods typically employ one modality of QTs to study its association with SNPs. Both MTL and SCCA are computational expensive as the number of SNPs increases. In this paper, we propose a novel multi-task SCCA (MTSCCA) method to identify bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by different imaging modalities. MTSCCA enforces sparsity at the group level via the G2,1-norm, and jointly selects features across multiple tasks for SNPs and QTs via the L2,1-norm. A fast optimization algorithm is proposed using the grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains better correlation coefficients and canonical weights patterns. In addition, MTSCCA runs very fast and easy-to-implement, indicating its potential power in genome-wide brain-wide imaging genetics. 
    more » « less
  6. Abstract Motivation

    Identifying the genetic basis of the brain structure, function and disorder by using the imaging quantitative traits (QTs) as endophenotypes is an important task in brain science. Brain QTs often change over time while the disorder progresses and thus understanding how the genetic factors play roles on the progressive brain QT changes is of great importance and meaning. Most existing imaging genetics methods only analyze the baseline neuroimaging data, and thus those longitudinal imaging data across multiple time points containing important disease progression information are omitted.


    We propose a novel temporal imaging genetic model which performs the multi-task sparse canonical correlation analysis (T-MTSCCA). Our model uses longitudinal neuroimaging data to uncover that how single nucleotide polymorphisms (SNPs) play roles on affecting brain QTs over the time. Incorporating the relationship of the longitudinal imaging data and that within SNPs, T-MTSCCA could identify a trajectory of progressive imaging genetic patterns over the time. We propose an efficient algorithm to solve the problem and show its convergence. We evaluate T-MTSCCA on 408 subjects from the Alzheimer’s Disease Neuroimaging Initiative database with longitudinal magnetic resonance imaging data and genetic data available. The experimental results show that T-MTSCCA performs either better than or equally to the state-of-the-art methods. In particular, T-MTSCCA could identify higher canonical correlation coefficients and capture clearer canonical weight patterns. This suggests that T-MTSCCA identifies time-consistent and time-dependent SNPs and imaging QTs, which further help understand the genetic basis of the brain QT changes over the time during the disease progression.

    Availability and implementation

    The software and simulation data are publicly available at

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    more » « less