skip to main content

Search for: All records

Creators/Authors contains: "Liu, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Free, publicly-accessible full text available August 1, 2023
  4. Background: recent applications of wastewater-based epidemiology (WBE) have demonstrated its ability to track the spread and dynamics of COVID-19 at the community level. Despite the growing body of research, quantitative synthesis of SARS-CoV-2 RNA levels in wastewater generated from studies across space and time using diverse methods has not been performed. Objective: the objective of this study is to examine the correlations between SARS-CoV-2 RNA levels in wastewater and epidemiological indicators across studies, stratified by key covariates in study methodologies. In addition, we examined the association of proportions of positive detections in wastewater samples and methodological covariates. Methods: we systematically searched the Web of Science for studies published by February 16th, 2021, performed a reproducible screening, and employed mixed-effects models to estimate the levels of SARS-CoV-2 viral RNA quantities in wastewater samples and their correlations to the case prevalence, the sampling mode (grab or composite sampling), and the wastewater fraction analyzed ( i.e. , solids, solid–supernatant mixtures, or supernatants/filtrates). Results: a hundred and one studies were found; twenty studies (671 biosamples and 1751 observations) were retained following a reproducible screening. The mean positivity across all studies was 0.68 (95%-CI, [0.52; 0.85]). The mean viral RNA abundance was 5244 marker copiesmore »per mL (95%-CI, [0; 16 432]). The Pearson correlation coefficients between the viral RNA levels and case prevalence were 0.28 (95%-CI, [0.01; 0.51]) for daily new cases or 0.29 (95%-CI, [−0.15; 0.73]) for cumulative cases. The fraction analyzed accounted for 12.4% of the variability in the percentage of positive detections, followed by the case prevalence (9.3% by daily new cases and 5.9% by cumulative cases) and sampling mode (0.6%). Among observations with positive detections, the fraction analyzed accounted for 56.0% of the variability in viral RNA levels, followed by the sampling mode (6.9%) and case prevalence (0.9% by daily new cases and 0.8% by cumulative cases). While the sampling mode and fraction analyzed both significantly correlated with the SARS-CoV-2 viral RNA levels, the magnitude of the increase in positive detection associated with the fraction analyzed was larger. The mixed-effects model treating studies as random effects and case prevalence as fixed effects accounted for over 90% of the variability in SARS-CoV-2 positive detections and viral RNA levels. Interpretations: positive pooled means and confidence intervals in the Pearson correlation coefficients between the SARS-CoV-2 viral RNA levels and case prevalence indicators provide quantitative evidence that reinforces the value of wastewater-based monitoring of COVID-19. Large heterogeneities among studies in proportions of positive detections, viral RNA levels, and Pearson correlation coefficients suggest a strong demand for methods to generate data accounting for cross-study heterogeneities and more detailed metadata reporting. Large variance was explained by the fraction analyzed, suggesting sample pre-processing and fractionation as a direction that needs to be prioritized in method standardization. Mixed-effects models accounting for study level variations provide a new perspective to synthesize data from multiple studies.« less
    Free, publicly-accessible full text available June 29, 2023
  5. We report the design, simulation, and analysis of a THz phased array, using lens-coupled annular-slot antennas (ASAs) for potential beyond 5G or 6G wireless communications. For a prototype demonstration, the ASA employed was designed on a high resistivity Si substrate with a radius of 106 μm, and a gap width of 6 um for operation at 200 GHz. In order to achieve higher antenna gain and efficiency, an extended hemispherical silicon lens was also used. To investigate the effect of the silicon lens on the ASA phased array, a 1 × 3 array and 1 × 5 array (the element distance is 0.55λ) were implemented with a silicon lens using different extension lengths. The simulation shows that for a 1 × 3 array, a ±17° scanning angle with an about −10 dB sidelobe level and 11.82 dB gain improvement (compared to the array without lens) can be achieved using a lens radius of 5000 μm and an extension length of 1000 μm. A larger scanning angle of ±31° can also be realized by a 1 × 5 array (using a shorter extension length of 250 μm). The approach of designing a 200 GHz lens-coupled phased array reported here is informativemore »and valuable for the future development of wireless communication technologies.« less
  6. Graphene with in-plane nanoholes, named holey graphene, shows great potential in electrochemical applications due to its fast mass transport and improved electrochemical activity. Scalable nanomanufacturing of holey graphene is generally based on chemical etching using hydrogen peroxide to form through-the-thickness nanoholes on the basal plane of graphene. In this study, we probe into the fundamental mechanisms of nanohole formation under peroxide etching via an integrated experimental and computational effort. The research results show that the growth of nanoholes during the etching of graphene oxide is achieved by a three-stage reduction–oxidation–reduction procedure. First, it is demonstrated that vacancy defects are formed via a partial reduction-based pretreatment. Second, hydrogen peroxide reacts preferentially with the edge-sites of defect areas on graphene oxide sheets, leading to the formation of various oxygen-containing functional groups. Third, the carbon atoms around the defects are removed along with the neighboring carbon atoms via reduction. By advancing the understanding of process mechanisms, we further demonstrate an improved nanomanufacturing strategy, in which graphene oxide with a high density of defects is introduced for peroxide etching, leading to enhanced nanohole formation.
  7. We present a photoinduced reconfigurable metasurface to enable high spatial resolution terahertz (THz) wave modulation. Conventional photoinduced THz wave modulation uses optically induced conductive patterns on a semiconductor substrate to create programmable passive THz devices. The technique, albeit versatile and straightforward, suffers from limited performance resulting from the severe lateral diffusion of the photogenerated carriers that undermines the spatial resolution and conductivity contrast of the photoinduced conductive patterns. The proposed metasurface overcomes the limitation using a metal-jointed silicon mesa array with subwavelength-scaled dimensions on an insulator substrate. The structure physically restrains the lateral diffusion of the photogenerated carriers while ensuring the electrical conductivity between the silicon mesas , which is essential for THz wave modulation. The metasurface creates high-definition photoconductive patterns with dimensions smaller than the diffusion length of photogenerated carriers. The metasurface provides a modulation depth of −20 to −10 dB for the THz waves between 0.2 to 1.2 THz and supports a THz bandpass filter with a tunable central frequency. The new, to the best of our knowledge, design concept will benefit the implementation of reconfigurable THz devices.

  8. An iron-catalyzed regioselective dicarbofunctionalization of electron-rich alkenes is described. In particular, aryl- and alkyl vinyl ethers are used as effective linchpins to couple alkyl or (fluoro)alkyl halides and sp 2 -hybridized Grignard nucleophiles. Preliminary results demonstrate the ability to engage thioethers as linchpins and control enantioselectivity in these transformations, an area which is largely unexplored in iron-catalyzed three-component cross-coupling reactions.