Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are n shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least t parties) come together with their shares. Importantly, it should be infeasible to copy their own shares and send the copies to two non-communicating parties, enabling both of them to recover the secret. Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding light on its implications, constructions, and inherent limitations. Connections: We explore the connections between USS and other quantum cryptographic primitives such as unclonable encryption and position verification, showing the difficulties to achieve USS in different scenarios. Limited Entanglement: In the case where the adversarial shareholders do not share any entanglement or limited entanglement, we demonstrate information-theoretic constructions for USS. Large Entanglement: If we allow the adversarial shareholders to have unbounded entanglement resources (and unbounded computation), we prove that unclonable secret sharing is impossible. On the other hand, in the quantum random oracle model where the adversary can only make a bounded polynomial number of queries, we show a construction secure even with unbounded entanglement. Furthermore, even when these adversaries possess only a polynomial amount of entanglement resources, we establish that any unclonable secret sharing scheme with a reconstruction function implementable using Cliffords and logarithmically many T-gates is also unattainable.more » « lessFree, publicly-accessible full text available December 9, 2025
-
Free, publicly-accessible full text available December 9, 2025
-
Guruswami, Venkatesan (Ed.)It is a long-standing open question to construct a classical oracle relative to which BQP/qpoly ≠ BQP/poly or QMA ≠ QCMA. In this paper, we construct classically-accessible classical oracles relative to which BQP/qpoly ≠ BQP/poly and QMA ≠ QCMA. Here, classically-accessible classical oracles are oracles that can be accessed only classically even for quantum algorithms. Based on a similar technique, we also show an alternative proof for the separation of QMA and QCMA relative to a distributional quantumly-accessible classical oracle, which was recently shown by Natarajan and Nirkhe.more » « less
-
The Fiat-Shamir transformation is a useful approach to building non-interactive arguments (of knowledge) in the random oracle model. Unfortunately, existing proof techniques are incapable of proving the security of Fiat-Shamir in the quantum setting. The problem stems from (1) the difficulty of quantum rewinding, and (2) the inability of current techniques to adaptively program random oracles in the quantum setting. In this work, we show how to overcome the limitations above in many settings. In particular, we give mild conditions under which Fiat-Shamir is secure in the quantum setting. As an application, we show that existing lattice signatures based on Fiat-Shamir are secure without any modifications.more » « less
-
A k-collision for a compressing hash function H is a set of k distinct inputs that all map to the same output. In this work, we show that for any constant k, \Theta(N^(1/2(1-1/(2^k-1)))) quantum queries are both necessary and sufficient to achieve a k-collision with constant probability. This improves on both the best prior upper bound (Hosoyamada et al., ASIACRYPT 2017) and provides the first non-trivial lower bound, completely resolving the problem.more » « less