skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Liu, Xiaohong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric aerosol and chemistry modules are key elements in Earth system models (ESMs), as they predict air pollutant concentrations and properties that can impact human health, weather, and climate. The current uncertainty in climate projections is partly due to the inaccurate representation of aerosol direct and indirect forcing. Aerosol/chemistry parameterizations used within ESMs and other atmospheric models span large structural and parameter uncertainties that are difficult to assess independently of their host models. Moreover, there is a strong need for a standardized interface between aerosol/chemistry modules and the host model to facilitate portability of aerosol/chemistry parameterizations from one model to another, allowing not only a comparison between different parameterizations within the same modeling framework, but also quantifying the impact of different model frameworks on aerosol/chemistry predictions. To address this need, we have initiated a new community effort to coordinate the construction of a Generalized Aerosol/Chemistry Interface (GIANT) for use across weather and climate models. We aim to organize a series of community workshops and hackathons to design and build GIANT, which will serve as the interface between a range of aerosol/chemistry modules and the physics and dynamics components of atmospheric host models. GIANT will leverage ongoing efforts at the U.S. modeling centers focused on building next-generation ESMs and the international AeroCom initiative to implement this common aerosol/chemistry interface. GIANT will create transformative opportunities for scientists and students to conduct innovative research to better characterize structural and parametric uncertainties in aerosol/chemistry modules, and to develop a common set of aerosol/chemistry parameterizations.

    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.

    more » « less
  3. null (Ed.)
    Abstract. Cirrus cloud radiative effects are largely affected byice microphysical properties, including ice water content (IWC), ice crystalnumber concentration (Ni) and mean diameter (Di). These characteristics varysignificantly due to thermodynamic, dynamical and aerosol conditions. Inthis work, a global-scale observation dataset is used to examine regionalvariations of cirrus cloud microphysical properties, as well as several keycontrolling factors, i.e., temperature, relative humidity with respect toice (RHi), vertical velocity (w) and aerosol number concentrations (Na).Results are compared with simulations from the National Center forAtmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6).Observed and simulated ice mass and number concentrations are constrained to≥62.5 µm to reduce potential uncertainty from shattered ice indata collection. The differences between simulations and observations arefound to vary with latitude and temperature. Comparing with averagedobservations at ∼100 km horizontal scale, simulations arefound to underestimate (overestimate) IWC by a factor of 3–10 in theNorthern (Southern) Hemisphere. Simulated Ni is overestimated in mostregions except the Northern Hemisphere midlatitudes. Simulated Di isunderestimated by a factor of 2, especially for warmer conditions(−50 to −40 ∘C), possibly due tomisrepresentation of ice particle growth/sedimentation. For RHi effects, thefrequency and magnitude of ice supersaturation are underestimated insimulations for clear-sky conditions. The simulated IWC and Ni show bimodaldistributions with maximum values at 100 % and 80 % RHi, differing fromthe unimodal distributions that peak at 100 % in the observations. For weffects, both observations and simulations show variances of w (σw) decreasing from the tropics to polar regions, but simulations show muchhigher σw for the in-cloud condition than the clear-sky condition.Compared with observations, simulations show weaker aerosol indirect effectswith a smaller increase of IWC and Di at higher Na. These findings provide anobservation-based guideline for improving simulated ice microphysicalproperties and their relationships with key controlling factors at variousgeographical locations. 
    more » « less
  4. Cirrus cloud radiative effects are largely affected by ice microphysical properties, including ice water content (IWC), ice crystal number concentration (Ni) and mean diameter (Di). These characteristics vary significantly due to thermodynamic, dynamical and aerosol conditions. In this work, a global-scale observation dataset is used to examine regional variations of cirrus cloud microphysical properties, as well as several key controlling factors, i.e., temperature, relative humidity with respect to ice (RHi), vertical velocity (w), and aerosol number concentrations (Na). Results are compared with simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6). The differences between simulations and observations are found to vary with latitude and temperature. Specifically, simulations are found to underestimate IWC by a factor of 5–30 in all regions. Simulated Ni is overestimated in most regions except Northern Hemisphere midlatitude and polar regions. Simulated Di is underestimated, especially for warmer conditions (−50 °C to −40 °C) and higher Na, possibly due to less effective ice particle growth/sedimentation and weaker aerosol indirect effects, respectively. For RHi effects, the frequency and magnitude of ice supersaturation is underestimated in simulations for clear-sky conditions, and the simulated IWC and Ni show maximum values at 80 % RHi instead of 110 % as observed. For w effects, both observations and simulations show variances of w (σw) decreasing from tropics to polar regions, but simulations show much higher σw for in-cloud condition than clear-sky condition. These findings provide an observation-based guideline for improving simulated ice microphysical properties and their relationships with key controlling factors at various geographical locations. 
    more » « less
  5. Abstract

    Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations.

    more » « less
  6. null (Ed.)
    ABSTRACT To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders. 
    more » « less
  7. Abstract. The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

    more » « less
  8. Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliqand Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliqin liquid (mixed) phase, overestimate Ncicein mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulations lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.

    more » « less
  9. Abstract

    An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5‐chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7‐mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode‐resolved thermodynamics and heterogeneous chemical reactions. Applied in the free‐running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement with observations and previous studies. Inclusion of nitrate resulted in ∼10% higher global average accumulation mode number concentrations, indicating enhanced growth of Aitken mode aerosols from nitrate formation. While the simulated accumulation mode nitrate burdens are high over the anthropogenic source regions, the sea‐salt and dust modes respectively constitute about 74% and 17% of the annual global average nitrate burden. Regional clear‐sky shortwave radiative cooling of up to −5 W m−2due to nitrate is seen, with a much smaller global average cooling of −0.05 W m−2. Significant enhancements in regional cloud condensation nuclei (at 0.1% supersaturation) and cloud droplet number concentrations are also attributed to nitrate, causing an additional global average shortwave cooling of −0.8 W m−2. Taking into consideration of changes in both longwave and shortwave radiation under all‐sky conditions, the net change in the top of the atmosphere radiative fluxes induced by including nitrate aerosol is −0.7 W m−2.

    more » « less