skip to main content

Search for: All records

Creators/Authors contains: "Liu, Xiaohong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Cirrus cloud radiative effects are largely affected byice microphysical properties, including ice water content (IWC), ice crystalnumber concentration (Ni) and mean diameter (Di). These characteristics varysignificantly due to thermodynamic, dynamical and aerosol conditions. Inthis work, a global-scale observation dataset is used to examine regionalvariations of cirrus cloud microphysical properties, as well as several keycontrolling factors, i.e., temperature, relative humidity with respect toice (RHi), vertical velocity (w) and aerosol number concentrations (Na).Results are compared with simulations from the National Center forAtmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6).Observed and simulated ice mass and number concentrations are constrained to≥62.5 µm to reduce potential uncertainty from shattered ice indata collection. The differences between simulations and observations arefound to vary with latitude and temperature. Comparing with averagedobservations at ∼100 km horizontal scale, simulations arefound to underestimate (overestimate) IWC by a factor of 3–10 in theNorthern (Southern) Hemisphere. Simulated Ni is overestimated in mostregions except the Northern Hemisphere midlatitudes. Simulated Di isunderestimated by a factor of 2, especially for warmer conditions(−50 to −40 ∘C), possibly due tomisrepresentation of ice particle growth/sedimentation. For RHi effects, thefrequency and magnitude of ice supersaturation are underestimated insimulations for clear-sky conditions. The simulated IWC and Ni show bimodaldistributions with maximum valuesmore »at 100 % and 80 % RHi, differing fromthe unimodal distributions that peak at 100 % in the observations. For weffects, both observations and simulations show variances of w (σw) decreasing from the tropics to polar regions, but simulations show muchhigher σw for the in-cloud condition than the clear-sky condition.Compared with observations, simulations show weaker aerosol indirect effectswith a smaller increase of IWC and Di at higher Na. These findings provide anobservation-based guideline for improving simulated ice microphysicalproperties and their relationships with key controlling factors at variousgeographical locations.« less
  2. Cirrus cloud radiative effects are largely affected by ice microphysical properties, including ice water content (IWC), ice crystal number concentration (Ni) and mean diameter (Di). These characteristics vary significantly due to thermodynamic, dynamical and aerosol conditions. In this work, a global-scale observation dataset is used to examine regional variations of cirrus cloud microphysical properties, as well as several key controlling factors, i.e., temperature, relative humidity with respect to ice (RHi), vertical velocity (w), and aerosol number concentrations (Na). Results are compared with simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6). The differences between simulations and observations are found to vary with latitude and temperature. Specifically, simulations are found to underestimate IWC by a factor of 5–30 in all regions. Simulated Ni is overestimated in most regions except Northern Hemisphere midlatitude and polar regions. Simulated Di is underestimated, especially for warmer conditions (−50 °C to −40 °C) and higher Na, possibly due to less effective ice particle growth/sedimentation and weaker aerosol indirect effects, respectively. For RHi effects, the frequency and magnitude of ice supersaturation is underestimated in simulations for clear-sky conditions, and the simulated IWC and Ni show maximum values at 80 % RHi instead of 110 %more »as observed. For w effects, both observations and simulations show variances of w (σw) decreasing from tropics to polar regions, but simulations show much higher σw for in-cloud condition than clear-sky condition. These findings provide an observation-based guideline for improving simulated ice microphysical properties and their relationships with key controlling factors at various geographical locations.« less
  3. ABSTRACT To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.
  4. Abstract. The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them duemore »to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

    « less
  5. Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliqand Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliqin liquid (mixed) phase, overestimate Ncicein mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulationsmore »lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.

    « less