Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recommender systems (RS) are effective tools for mitigating information overload and have seen extensive applications across various domains. However, the single focus on utility goals proves to be inadequate in addressing real-world concerns, leading to increasing attention to fairness-aware and diversity-aware RS. While most existing studies explore fairness and diversity independently, we identify strong connections between these two domains. In this survey, we first discuss each of them individually and then dive into their connections. Additionally, motivated by the concepts of user-level and item-level fairness, we broaden the understanding of diversity to encompass not only the item level but also the user level. With this expanded perspective on user and item-level diversity, we re-interpret fairness studies from the viewpoint of diversity. This fresh perspective enhances our understanding of fairness-related work and paves the way for potential future research directions. Papers discussed in this survey along with public code links are available at: https://github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systemsmore » « lessFree, publicly-accessible full text available May 21, 2025
-
Despite fundamental interests in learning quantum circuits, the existence of a computationally efficient algorithm for learning shallow quantum circuits remains an open question. Because shallow quantum circuits can generate distributions that are classically hard to sample from, existing learning algorithms do not apply. In this work, we present a polynomial-time classical algorithm for learning the description of any unknown π-qubit shallow quantum circuit π (with arbitrary unknown architecture) within a small diamond distance using single-qubit measurement data on the output states of π. We also provide a polynomial-time classical algorithm for learning the description of any unknown π-qubit state |πβ© = π|0^πβ© prepared by a shallow quantum circuit π (on a 2D lattice) within a small trace distance using single-qubit measurements on copies of |πβ©. Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions. This circuit representation yields an optimization landscape that can be efficiently navigated and enables efficient learning of quantum circuits that are classically hard to simulate.more » « lessFree, publicly-accessible full text available June 10, 2025
-
Abstract Recently, several quantum benchmarking algorithms have been developed to characterize noisy quantum gates on todayβs quantum devices. A fundamental issue in benchmarking is that not everything about quantum noise is learnable due to the existence of gauge freedom, leaving open the question what information is learnable and what is not, which is unclear even for a single CNOT gate. Here we give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results reveal the optimality of cycle benchmarking in the sense that it can extract all learnable information about Pauli noise. We experimentally demonstrate noise characterization of IBMβs CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using physical constraints. In addition, we show that an attempt to extract unlearnable information by ignoring state preparation noise yields unphysical estimates, which is used to lower bound the state preparation noise.more » « less
-
In computer-aided drug discovery, quantitative structure activity relation models are trained to predict biological activity from chemical structure. Despite the recent success of applying graph neural network to this task, important chemical information such as molecular chirality is ignored. To fill this crucial gap, we propose Molecular-Kernel Graph NeuralNetwork (MolKGNN) for molecular representation learning, which features SE(3)-/conformation invariance, chirality-awareness, and interpretability. For our MolKGNN, we first design a molecular graph convolution to capture the chemical pattern by comparing the atom's similarity with the learnable molecular kernels. Furthermore, we propagate the similarity score to capture the higher-order chemical pattern. To assess the method, we conduct a comprehensive evaluation with nine well-curated datasets spanning numerous important drug targets that feature realistic high class imbalance and it demonstrates the superiority of MolKGNN over other graph neural networks in computer-aided drug discovery. Meanwhile, the learned kernels identify patterns that agree with domain knowledge, confirming the pragmatic interpretability of this approach. Our code and supplementary material are publicly available at https://github.com/meilerlab/MolKGNN.