skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fairness and Diversity in Recommender Systems: A Survey
Recommender systems (RS) are effective tools for mitigating information overload and have seen extensive applications across various domains. However, the single focus on utility goals proves to be inadequate in addressing real-world concerns, leading to increasing attention to fairness-aware and diversity-aware RS. While most existing studies explore fairness and diversity independently, we identify strong connections between these two domains. In this survey, we first discuss each of them individually and then dive into their connections. Additionally, motivated by the concepts of user-level and item-level fairness, we broaden the understanding of diversity to encompass not only the item level but also the user level. With this expanded perspective on user and item-level diversity, we re-interpret fairness studies from the viewpoint of diversity. This fresh perspective enhances our understanding of fairness-related work and paves the way for potential future research directions. Papers discussed in this survey along with public code links are available at: https://github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systems  more » « less
Award ID(s):
2239881
PAR ID:
10528818
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
ISSN:
2157-6904
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, we consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems. 
    more » « less
  2. Synthetic data is a useful resource for algorithmic research. It allows for the evaluation of systems under a range of conditions that might be difficult to achieve in real world settings. In recommender systems, the use of synthetic data is somewhat limited; some work has concentrated on building user-item interaction data at large scale. We believe that fairness-aware recommendation research can benefit from simulated data as it allows the study of protected groups and their interactions without depending on sensitive data that needs privacy protection. In this paper, we propose a novel type of data for fairness-aware recommendation: synthetic recommender system outputs that can be used to study re-ranking algorithms. 
    more » « less
  3. Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN. 
    more » « less
  4. null (Ed.)
    The success of cross-domain recommender systems in capturing user interests across multiple domains has recently brought much attention to them. These recommender systems aim to improve the quality of suggestions and defy the cold-start problem by transferring information from one (or more) source domain(s) to a target domain. However, most cross-domain recommenders ignore the sequential information in user history. They only rely on an aggregate or snapshot of user feedback in the past. Most importantly, they do not explicitly model how users transition from one domain to another domain as users continue to interact with different item domains. In this paper, we argue that between-domain transitions in user sequences are useful in improving recommendation quality, dealing with the cold-start problem, and revealing interesting aspects of how user interests transform from one domain to another. We propose TransCrossCF, transition-based cross-domain collaborative filtering, that can capture both within and between domain transitions of user feedback sequences while understanding the relationship between different item types in different domains. Specifically, we model each purchase of a user as a transition from his/her previous item to the next one, under the effect of item domains and user preferences. Our intensive experiments demonstrate that TransCrossCF outperforms the state-of-the-art methods in recommendation task on three real-world datasets, both in the cold-start and hot-start scenarios. Moreover, according to our context analysis evaluations, the between-domain relations captured by TransCrossCF are interpretable and intuitive. 
    more » « less
  5. As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond. 
    more » « less