Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pretrained Language Models (LMs) have demonstrated ability to perform numerical reasoning by extrapolating from a few examples in few-shot settings. However, the extent to which this extrapolation relies on robust reasoning is unclear. In this paper, we investigate how well these models reason with terms that are less frequent in the pretraining data. In particular, we examine the correlations between the model performance on test instances and the frequency of terms from those instances in the pretraining data. We measure the strength of this correlation for a number of GPT-based language models (pretrained on the Pile dataset) on various numerical deduction tasks (e.g., arithmetic and unit conversion). Our results consistently demonstrate that models are more accurate on instances whose terms are more prevalent, in some cases above 70% (absolute) more accurate on the top 10% frequent terms in comparison to the bottom 10%. Overall, although LMs appear successful at few-shot numerical reasoning, our results raise the question of how much models actually generalize beyond pretraining data, and we encourage researchers to take the pretraining data into account when interpreting evaluation results.more » « less
-
Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800 GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at https://nlp.ics.uci.edu/snoopy.more » « less
-
null (Ed.)Streaming cross document entity coreference (CDC) systems disambiguate mentions of named entities in a scalable manner via incremental clustering. Unlike other approaches for named entity disambiguation (e.g., entity linking), streaming CDC allows for the disambiguation of entities that are unknown at inference time. Thus, it is well-suited for processing streams of data where new entities are frequently introduced. Despite these benefits, this task is currently difficult to study, as existing approaches are either evaluated on datasets that are no longer available, or omit other crucial details needed to ensure fair comparison. In this work, we address this issue by compiling a large benchmark adapted from existing free datasets, and performing a comprehensive evaluation of a number of novel and existing baseline models. We investigate: how to best encode mentions, which clustering algorithms are most effective for grouping mentions, how models transfer to different domains, and how bounding the number of mentions tracked during inference impacts performance. Our results show that the relative performance of neural and feature-based mention encoders varies across different domains, and in most cases the best performance is achieved using a combination of both approaches. We also find that performance is minimally impacted by limiting the number of tracked mentions.more » « less
-
null (Ed.)The ongoing pandemic has heightened the need for developing tools to flag COVID-19-related misinformation on the internet, specifically on social media such as Twitter. However, due to novel language and the rapid change of information, existing misinformation detection datasets are not effective for evaluating systems designed to detect misinformation on this topic. Misinformation detection can be divided into two sub-tasks: (i) retrieval of misconceptions relevant to posts being checked for veracity, and (ii) stance detection to identify whether the posts Agree, Disagree, or express No Stance towards the retrieved misconceptions. To facilitate research on this task, we release COVIDLies (https://ucinlp.github.io/covid19 ), a dataset of 6761 expert-annotated tweets to evaluate the performance of misinformation detection systems on 86 different pieces of COVID-19 related misinformation. We evaluate existing NLP systems on this dataset, providing initial benchmarks and identifying key challenges for future models to improve upon.more » « less
-
Language models that use additional latent structures (e.g., syntax trees, coreference chains, knowledge graph links) provide several advantages over traditional language models. However, likelihood-based evaluation of these models is often intractable as it requires marginalizing over the latent space. Existing works avoid this issue by using importance sampling. Although this approach has asymptotic guarantees, analysis is rarely conducted on the effect of decisions such as sample size and choice of proposal distribution on the reported estimates. In this paper, we carry out this analysis for three models: RNNG, EntityNLM, and KGLM. In addition, we elucidate subtle differences in how importance sampling is applied in these works that can have substantial effects on the final estimates, as well as provide theoretical results which reinforce the validity of this technique.more » « less