skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Andrew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. I summarize several cosmological and astrophysical probes of axions and axion-like particles. Topics covered include an introduction to the Strong \textsf{CP} problem and axions, axion emission from compact stars and supernovae, the impact of axion dark radiation on the cosmic microwave background (CMB) anisotropies, and the imprint of axion strings on the CMB. 
    more » « less
    Free, publicly-accessible full text available November 30, 2025
  2. Cosmological gravitational particle production (CGPP) is the creation of particles in an expanding universe due solely to their gravitational interaction. These particles can play an important role in the cosmic history through their connection to various cosmological relics including dark matter, gravitational-wave radiation, dark radiation, and the baryon asymmetry. This review explains the phenomenon of CGPP as a consequence of quantum fields in a time-dependent background, catalogs known results for the spectra and cosmological abundance of gravitationally produced particles of various spins, and explores the phenomenological consequences and observational signatures of CGPP. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. In the strong magnetic field of a neutron star’s magnetosphere, axions coupled to electromagnetism develop a nonzero probability to convert into photons. Past studies have revealed that the axion-photon conversion can be resonantly enhanced. We recognize that the axion-photon resonance admits two parametrically distinct resonant solutions, which we call the mass-matched resonance and the Euler-Heisenberg assisted resonance. The mass-matched resonance occurs at a point in the magnetosphere where the radially-varying plasma frequency crosses the axion mass ω pl m a . The Euler-Heisenberg assisted resonance occurs where the axion energy satisfies ω ( 2 ω pl 2 / 7 g γ γ γ γ B ¯ 2 ) 1 / 2 . This second resonance is made possible though the strong background magnetic field B ¯ , as well as the nonzero Euler-Heisenberg four-photon self-interaction, which has the coupling g γ γ γ γ = 8 α 2 / 45 m e 4 . We study the resonant conversion of relativistic axion dark radiation into photons via the Euler-Heisenberg assisted resonance, and we calculate the expected electromagnetic radiation assuming different values for the axion-photon coupling g a γ γ and different amplitudes for the axion flux onto the neutron star Φ a . We briefly discuss several possible sources of axion dark radiation. Achieving a sufficiently strong axion flux to induce a detectable electromagnetic signal seems unlikely. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of | g a e μ | 10 6 . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of | g a e μ | 10 11 , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024 
    more » « less
  5. Abstract The presence of axion strings in the Universe after recombination can leave an imprint on the polarization pattern of the cosmic microwave background radiation through the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle's coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to display a patchwork of uniform regions with sharp boundaries that arise as the `shadow' of axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic birefringence were detected in the future, a measurement of its non-Gaussian properties would facilitate a discrimination across different new physics sources generally, and in the context of axion strings specifically, it would help to break degeneracies between the axion-photon coupling and properties of the string network. 
    more » « less
  6. Wave-like dark matter made of spin-1 particles (dark photons) is expected to form ground state clumps called “vector solitons”, which can have different polarizations. In this work, we consider the interaction of dark photons with photons, expressed as dimension-6 operators, and study the electromagnetic radiation that arises from an isolated vector soliton due to parametric resonant amplification of the ambient electromagnetic field. We characterize the directional dependence and polarization of the outgoing radiation, which depends on the operator as well as the polarization state of the underlying vector soliton. We discuss the implications of this radiation for the stability of solitons and as a possible channel for detecting mergers of vector solitons through astrophysical observations. 
    more » « less
  7. A<sc>bstract</sc> The phenomenon of cosmological gravitational particle production (CGPP) is expected to occur during the period of inflation and the transition into a hot big bang cosmology. Particles may be produced even if they only couple directly to gravity, and so CGPP provides a natural explanation for the origin of dark matter. In this work we study the gravitational production of massive spin-2 particles assuming two different couplings to matter. We evaluate the full system of mode equations, including the helicity-0 modes, and by solving them numerically we calculate the spectrum and abundance of massive spin-2 particles that results from inflation on a hilltop potential. We conclude that CGPP might provide a viable mechanism for the generation of massive spin-2 particle dark matter during inflation, and we identify the favorable region of parameter space in terms of the spin-2 particle’s mass and the reheating temperature. As a secondary product of our work, we identify the conditions under which such theories admit ghost or gradient instabilities, and we thereby derive a generalization of the Higuchi bound to Friedmann-Robertson-Walker (FRW) spacetimes. 
    more » « less
  8. A<sc>bstract</sc> Previous numerical investigations of gravitational particle production during the coherent oscillation period of inflation displayed unexplained fluctuations in the spectral density of the produced particles. We argue that these features are due to the quantum interference of the coherent scattering reactions that produce the particles. We provide accurate analytic formulae to compute the particle production amplitude for a conformally- coupled scalar field, including the interference effect in the kinematic region where the production can be interpreted as inflaton scattering into scalar final states via graviton exchange. 
    more » « less
  9. A<sc>bstract</sc> The phenomenon of gravitational particle production can take place for quantum fields in curved spacetime. The abundance and energy spectrum of gravitationally produced particles is typically calculated by solving the field’s mode equations on a time-dependent background metric. For purposes of studying dark matter production in an inflationary cosmology, these mode equations are often solved numerically, which is computationally intensive, especially for the rapidly-oscillating high-momentum modes. However, these same modes are amenable to analytic evaluation via the Exact Wentzel-Kramers-Brillouin (EWKB) method, where gravitational particle production is a manifestation of the Stokes phenomenon. These analytic techniques have been used in the past to study gravitational particle production for spin-0 bosons. We extend the earlier work to study gravitational production of spin-1/2 and spin-3/2 fermions. We derive an analytic expression for the connection matrix (valid to all orders in an adiabatic parameterħ) that relates Bogoliubov coefficients across a Stokes line connecting a merged pair of simple turning points. By comparing the analytic approximation with a direct numerical integration of the mode equations, we demonstrate an excellent agreement and highlight the utility of the Stokes phenomenon formalism applied to fermions. We discuss the implications for an analytic understanding of catastrophic particle production due to vanishing sound speed, which can occur for a spin-3/2 Rarita-Schwinger field. 
    more » « less
  10. Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network. 
    more » « less