skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Andrew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In models of warm dark matter, there is an appreciable population of high momentum particles in the early universe, which free stream out of primordial over/under densities, thereby prohibiting the growth of structure on small length scales. The distance that a dark matter particle travels without obstruction, known as the free streaming length, depends on the particle's mass and momentum, but also on the cosmological expansion rate. In this way, measurements of the linear matter power spectrum serve to probe warm dark matter as well as the cosmological expansion history. In this work, we focus on ultra-light warm wave dark matter (WWDM) characterized by a typical comoving momentumq*and massm. We first derive constraints on the WWDM parameter space (q*,m) using Lyman-αforest observations due to a combination of the free-streaming effect and the white-noise effect. We next assess how the free streaming of WWDM is affected by three modified expansion histories: early matter domination, early dark energy, and very early dark energy. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Axion-like particles may form a network of cosmic strings in the Universe today that can rotate the plane of polarization of cosmic microwave background (CMB) photons. Future CMB observations with improved sensitivity might detect this axion-string-induced birefringence effect, thereby revealing an as-yet unseen constituent of the Universe and offering a new probe of particles and forces that are beyond the Standard Model of Elementary Particle Physics. In this work, we explore how spherical convolutional neural networks (SCNNs) may be used to extract information about the axion string network from simulated birefringence maps. We construct a pipeline to simulate the anisotropic birefringence that would arise from an axion string network, and we train SCNNs to estimate three parameters related to the cosmic string length, the cosmic string abundance, and the axion-photon coupling. Our results demonstrate that neural networks are able to extract information from a birefringence map that is inaccessible with two-point statistics alone (i.e., the angular power spectrum). We also assess the impact of noise on the accuracy of our SCNN estimators, demonstrating that noise at the level anticipated for Stage IV (CMB-S4) measurements would significantly bias parameter estimation for SCNNs trained on noiseless simulated data, and necessitate modeling the noise in the training data. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. I summarize several cosmological and astrophysical probes of axions and axion-like particles. Topics covered include an introduction to the Strong \textsf{CP} problem and axions, axion emission from compact stars and supernovae, the impact of axion dark radiation on the cosmic microwave background (CMB) anisotropies, and the imprint of axion strings on the CMB. 
    more » « less
  4. In the strong magnetic field of a neutron star’s magnetosphere, axions coupled to electromagnetism develop a nonzero probability to convert into photons. Past studies have revealed that the axion-photon conversion can be resonantly enhanced. We recognize that the axion-photon resonance admits two parametrically distinct resonant solutions, which we call the mass-matched resonance and the Euler-Heisenberg assisted resonance. The mass-matched resonance occurs at a point in the magnetosphere where the radially-varying plasma frequency crosses the axion mass ω pl m a . The Euler-Heisenberg assisted resonance occurs where the axion energy satisfies ω ( 2 ω pl 2 / 7 g γ γ γ γ B ¯ 2 ) 1 / 2 . This second resonance is made possible though the strong background magnetic field B ¯ , as well as the nonzero Euler-Heisenberg four-photon self-interaction, which has the coupling g γ γ γ γ = 8 α 2 / 45 m e 4 . We study the resonant conversion of relativistic axion dark radiation into photons via the Euler-Heisenberg assisted resonance, and we calculate the expected electromagnetic radiation assuming different values for the axion-photon coupling g a γ γ and different amplitudes for the axion flux onto the neutron star Φ a . We briefly discuss several possible sources of axion dark radiation. Achieving a sufficiently strong axion flux to induce a detectable electromagnetic signal seems unlikely. Published by the American Physical Society2024 
    more » « less
  5. This paper summarizes the discussions which took place during the PITT-PACC Workshop entitled “Non-Standard Cosmological Epochs and Expansion Histories,” held in Pittsburgh, Pennsylvania, Sept. 5–7, 2024. Much like the non-standard cosmological epochs that were the subject of these discussions, the format of this workshop was also non-standard. Rather than consisting of a series of talks from participants, with each person presenting their own work, this workshop was instead organized around free-form discussion blocks, with each centered on a different overall theme and guided by a different set of Discussion Leaders. This document is not intended to serve as a comprehensive review of these topics, but rather as an informal record of the discussions that took place during the workshop, in the hope that the content and free-flowing spirit of these discussions may inspire new ideas and research directions. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  6. The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of | g a e μ | 10 6 . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of | g a e μ | 10 11 , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024 
    more » « less
  7. Abstract The presence of axion strings in the Universe after recombination can leave an imprint on the polarization pattern of the cosmic microwave background radiation through the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle's coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to display a patchwork of uniform regions with sharp boundaries that arise as the `shadow' of axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic birefringence were detected in the future, a measurement of its non-Gaussian properties would facilitate a discrimination across different new physics sources generally, and in the context of axion strings specifically, it would help to break degeneracies between the axion-photon coupling and properties of the string network. 
    more » « less
  8. Wave-like dark matter made of spin-1 particles (dark photons) is expected to form ground state clumps called “vector solitons”, which can have different polarizations. In this work, we consider the interaction of dark photons with photons, expressed as dimension-6 operators, and study the electromagnetic radiation that arises from an isolated vector soliton due to parametric resonant amplification of the ambient electromagnetic field. We characterize the directional dependence and polarization of the outgoing radiation, which depends on the operator as well as the polarization state of the underlying vector soliton. We discuss the implications of this radiation for the stability of solitons and as a possible channel for detecting mergers of vector solitons through astrophysical observations. 
    more » « less
  9. A<sc>bstract</sc> The phenomenon of cosmological gravitational particle production (CGPP) is expected to occur during the period of inflation and the transition into a hot big bang cosmology. Particles may be produced even if they only couple directly to gravity, and so CGPP provides a natural explanation for the origin of dark matter. In this work we study the gravitational production of massive spin-2 particles assuming two different couplings to matter. We evaluate the full system of mode equations, including the helicity-0 modes, and by solving them numerically we calculate the spectrum and abundance of massive spin-2 particles that results from inflation on a hilltop potential. We conclude that CGPP might provide a viable mechanism for the generation of massive spin-2 particle dark matter during inflation, and we identify the favorable region of parameter space in terms of the spin-2 particle’s mass and the reheating temperature. As a secondary product of our work, we identify the conditions under which such theories admit ghost or gradient instabilities, and we thereby derive a generalization of the Higuchi bound to Friedmann-Robertson-Walker (FRW) spacetimes. 
    more » « less
  10. A<sc>bstract</sc> Previous numerical investigations of gravitational particle production during the coherent oscillation period of inflation displayed unexplained fluctuations in the spectral density of the produced particles. We argue that these features are due to the quantum interference of the coherent scattering reactions that produce the particles. We provide accurate analytic formulae to compute the particle production amplitude for a conformally- coupled scalar field, including the interference effect in the kinematic region where the production can be interpreted as inflaton scattering into scalar final states via graviton exchange. 
    more » « less