skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Long, Lance"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Composable infrastructure holds the promise of accelerating the pace of academic research and discovery by enabling researchers to tailor the resources of a machine (e.g., GPUs, storage, NICs), on-demand, to address application needs. We were first introduced to composable infrastructure in 2018, and at the same time, there was growing demand among our College of Engineering faculty for GPU systems for data science, artificial intelligence / machine learning / deep learning, and visualization. Many purchased their own individual desktop or deskside systems, a few pursued more costly cloud and HPC solutions, and others looked to the College or campus computer center for GPU resources which, at the time, were scarce. After surveying the diverse needs of our faculty and studying product offerings by a few nascent startups in the composable infrastructure sector, we applied for and received a grant from the National Science Foundation in November 2019 to purchase a mid-scale system, configured to our specifications, for use by faculty and students for research and research training. This paper describes our composable infrastructure solution and implementation for our academic community. Given how modern workflows are progressively moving to containers and cloud frameworks (using Kubernetes) and to programming notebooks (primarily Jupyter), both for ease of use and for ensuring reproducible experiments, we initially adapted these tools for our system. We have since made it simpler to use our system, and now provide our users with a public facing JupyterHub server. We also added an expansion chassis to our system to enable composable co-location, which is a shared central architecture in which our researchers can insert and integrate specialized resources (GPUs, accelerators, networking cards, etc.) needed for their research. In February 2020, installation of our system was finalized and made operational and we began providing access to faculty in the College of Engineering. Now, two years later, it is used by over 40 faculty and students plus some external collaborators for research and research training. Their use cases and experiences are briefly described in this paper. Composable infrastructure has proven to be a useful computational system for workload variability, uneven applications, and modern workflows in academic environments. 
    more » « less
  2. In today’s Big Data era, data scientists require modern workflows to quickly analyze large-scale datasets using complex codes to maintain the rate of scientific progress. These scientists often rely on available campus resources or off-the-shelf computational systems for their applications. Unified infrastructure or over-provisioned servers can quickly become bottlenecks for specific tasks, wasting time and resources. Composable infrastructure helps solve these problems by providing users with new ways to increase resource utilization. Composable infrastructure disaggregates a computer’s components – CPU, GPU (accelerators), storage and networking – into fluid pools of resources, but typically relies upon infrastructure engineers to architect individual machines. Infrastructure is either managed with specialized command-line utilities, user interfaces or specification files. These management models are cumbersome and difficult to incorporate into data-science workflows. We developed a high-level software API, Composastructure, which, when integrated into modern workflows, can be used by infrastructure engineers as well as data scientists to reorganize composable resources on demand. Composastructure enables infrastructures to be programmable, secure, persistent and reproducible. Our API composes machines, frees resources, supports multi-rack operations, and includes a Python module for Jupyter Notebooks. 
    more » « less
  3. null (Ed.)
  4. In today's Big Data era, data scientists require new computational instruments in order to quickly analyze large-scale datasets using complex codes and quicken the rate of scientific progress. While Federally-funded computer resources, from supercomputers to clouds, are beneficial, they are often limiting - particularly for deep learning and visualization - as they have few Graphics Processing Units (GPUs). GPUs are at the center of modern high-performance computing and artificial intelligence, efficiently performing mathematical operations that can be massively parallelized, speeding up codes used for deep learning, visualization and image processing, more so than general-purpose microprocessors, or Central Processing Units (CPUs). The University of Illinois at Chicago is acquiring a much-in-demand GPU-based instrument, COMPaaS DLV - COMposable Platform as a Service Instrument for Deep Learning & Visualization, based on composable infrastructure, an advanced architecture that disaggregates the underlying compute, storage, and network resources for scaling needs, but operates as a single cohesive infrastructure for management and workload purposes. We are experimenting with a small system and learning a great deal about composability, and we believe COMPaaS DLV users will benefit from the varied workflow that composable infrastructure allows. 
    more » « less
  5. Abstract — SAGE (the Scalable Adaptive Graphics Environment) and its successor SAGE2 (the Scalable Amplified Group Environment) are operating systems for managing content across wideband display environments. This paper documents the prevalent usage patterns of SAGE-enabled display walls in support of the e-Science enterprise, based on nearly 15 years of observations of the SAGE community. These patterns will help guide e-Science users and cyberinfrastructure developers on how best to leverage large tiled display walls, and the types of software services that could be provided in the future. 
    more » « less