skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loose, Brice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microplastic pollution has emerged as a global environmental concern, exhibiting wide distribution within marine ecosystems, including the Arctic Ocean. Limited Arctic microplastic data exist from beached plastics, seabed sediments, floating plastics, and sea ice. However, no studies have examined microplastics in the sea ice of the Canadian Arctic Archipelago and Tallurutiup Imanga National Marine Conservation Area, and few have explored Arctic marginal seas’ water column. The majority of the microplastic data originates from the Eurasian Arctic, with limited data available from other regions of the Arctic Ocean. This study presents data from two distinct campaigns in the Canadian Arctic Archipelago and Western Arctic marginal seas in 2019 and 2020. These campaigns involved sampling from different regions and matrices, making direct comparisons inappropriate. The study’s primary objective is to provide insights into the spatial and vertical distribution of microplastics. The results reveal elevated microplastic concentrations within the upper 50 m of the water column and significant accumulation in the sea ice, providing evidence to support the designation of sea ice as a microplastic sink. Surface seawater exhibits a gradient of microplastic counts, decreasing from the Chukchi Sea towards the Beaufort Sea. Polyvinyl chloride polymer (~60%) dominated microplastic composition in both sea ice and seawater. This study highlights the need for further investigations in this region to enhance our understanding of microplastic sources, distribution, and transport. 
    more » « less
  2. Unmanned Underwater Vehicles (UUVs) have a promising future to explore the polar regions. In this paper, we present our progress on developing a self-contain inertial odometry for under-ice navigation. Firstly, a microcontroller-based hardware time synchronization for multiple devices is demonstrated. Moreover, we present a new IMU, Doppler Velocity Log (DVL) and Pressure dead-reckoning (DR) for state estimation and a robust initialization approach for underwater vehciels. Field trials have been conducted in Utqiagvik, Alaska in March 2022 to gather multi-sensor data under the sea ice. In this paper, we highlight the performance of our method by comparing to the robot_localization algorithm, a widely used open-source localization algorithm. 
    more » « less
  3. An affordable Remotely Operated Vehicle (ROV) has been modified for under-ice sensing. In this paper, we present the system upgrade, including sensor integration, electronics and navigation stack. The new ROV is equipped with a Doppler Velocity Log (DVL) and an attitude heading reference system (AHRS) for navigation, and a stereo camera and a forward-looking imaging sonar for perception. Field experiments were conducted in March 2021 on a frozen waterway in Michigan. The ROV was controlled to stay within 2 meters away from the ice keel. Dead-reckoning navigation based on the DVL, AHRS and Extended Kalman Filter (EKF) are implemented with results presented in the paper. Using the navigation result and DVL beam range measurements, ice-thickness was estimated along the vehicle’s path. The ice thickness is found to be about 25 to 30 cm that is coincident with manual observation from drilled ice holes. Besides that, we also present and discuss interesting features embedded in the frozen ice observed by our stereo camera and the forward-looking imaging sonar. 
    more » « less
  4. Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean–sea ice–atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean–sea ice–atmosphere interface. 
    more » « less
  5. This data has been collected and processed as part of the MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) expedition. MOSAiC is a collaborative initiative led by the Alfred Wegener Institute and has received substantial funding from the German Federal Ministry of Education and Research, as well as the US National Science Foundation, Department of Energy, NOAA, and NASA. Numerous other international agencies and institutions have also made significant contributions. The primary objective of this program was to conduct a comprehensive investigation of the evolving Arctic over the course of a year. The expedition took place from October 2019 to October 2020 and was conducted aboard the Research Vessel Ice Breaker (RVIB) Polarstern, involving participants from 20 nations. As part of this submission, we are presenting five distinct datasets. Two of these datasets are related to seawater, two pertain to meltwater, and one pertains to sea ice. The "in-situ" datasets provide information on dissolved methane concentrations and isotope ratios, while the "in-vitro" datasets offer insights into potential methane oxidation rate constants. In the case of sea ice, only "in-vitro" data was collected, as discrete measurements were obtained from another research group. These datasets are the result of the project titled "Collaborative Research: Quantifying microbial controls on the annual cycle of methane and oxygen within the ultraoligotrophic Central Arctic during MOSAiC." The aim of this study was to assess the marine methane metabolism during a one-year period in the Central Arctic Ocean. The results have provided insights into the biogeography of methane hotspots, both in terms of production and oxidation. 
    more » « less
  6. null (Ed.)
    Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production. 
    more » « less
  7. Abstract Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models. 
    more » « less
  8. The international and interdisciplinary sea-ice drift expedition “The Multidisciplinary drifting Observatory for the Study of Arctic Climate” (MOSAiC) was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical, and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles, and linkages to the environment. In addition to the measurements of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution in specific time windows. A wide range of sampling instruments and approaches, including sea-ice coring, lead sampling with pumps, rosette-based water sampling, plankton nets, remotely operated vehicles, and acoustic buoys, was applied to address the science objectives. Further, a broad range of process-related measurements to address, for example, productivity patterns, seasonal migrations, and diversity shifts, were made both in situ and onboard RV Polarstern. This article provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of habitat- or process-specific sampling. The initial results presented include high biological activities in wintertime and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years. 
    more » « less
  9. Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean. 
    more » « less