Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Further miniaturization of electronic devices necessitates the introduction of new materials, including piezoelectric thin films, that exhibit electromechanical functionalities without significant degradation in response due to substrate-induced clamping. To identify material systems with superior piezoelectric properties as thin films, simplified and quantitative electromechanical characterization techniques are required. Here, single-beam, laser Doppler vibrometry is used to detect ac electric-field-induced surface displacement in the frequency range 1–100 kHz with low error (around 6% at 10 kHz) and resolution of 0.0003 nm. The technique is used to quantify both electrostriction and piezoelectric responses (surface displacement values <0.05 nm) of various thin films. Requirements for sample geometry and device structures are established and measurement accuracy and resolution are validated against measurements from the literature via synchrotron-based diffraction measurements. A general methodology to measure and extract the piezoelectric coefficients for thin-film samples using finite-element modeling is presented and applied to determine the d33 coefficient and visualize the response in substrate-clamped 50–400-nm-thick PbZr0.52Ti0.48O3 films, especially as compared to bulk versions with the same sample geometry.more » « less
-
Abstract Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.
-
Abstract Epitaxial strain has been shown to produce dramatic changes to the orbital structure in transition metal perovskite oxides and, in turn, the rate of oxygen electrocatalysis therein. Here, epitaxial strain is used to investigate the relationship between surface electronic structure and oxygen electrocatalysis in prototypical fuel cell cathode systems. Combining high‐temperature electrical‐conductivity‐relaxation studies and synchrotron‐based X‐ray absorption spectroscopy studies of La0.5Sr0.5CoO3and La0.8Sr0.2Co0.2Fe0.8O3thin films under varying degrees of epitaxial strain reveals a strong correlation between orbital structure and catalysis rates. In both systems, films under biaxial tensile strain simultaneously exhibit the fastest reaction kinetics and lowest electron occupation in the
dz 2orbitals. These results are discussed in the context of broader chemical trends and electronic descriptors are proposed for oxygen electrocatalysis in transition metal perovskite oxides.